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THE NATURE OF RESONANCE IN A SINGULAR PERTURBATION
PROBLEM OF TURNING POINT TYPE*

P. P. N. pE GROENT
Abstract. On the interval (a, b) with a <0< b we study the boundary value problem
—eu"+xp(x, e)u' +xq(x, e)u=r(e)u, u(a)=A, u(b)=B, 0<e«l.

The related eigenvalue problem has a discrete set of eigenvalues for each £ > 0. We expand each eigenvalue in
a formal asymptotic series in integral powers of € and we prove the validity of the expansion with the aid of the
Rayleigh quotient characterizations of the eigenvalues. If r(e) is not equal to an eigenvalue, the solution exists
and is unique; we prove that it decays exponentially for £ » +0, provided the distance between r(¢) and the
nearest eigenvalue is larger than exp (—y/¢) for some positive y depending on p. If r(e) is equal to an
eigenvalue, no solution exists (in general) and, if r(e) is near enough to an eigenvalue, the dominant term in
the solution is a multiple of the corresponding eigenfunction. From a spectral point of view the ‘“‘Ackerberg—
O’Malley resonance” is the familiar effect that the nearest free mode of the equation is amplified by the
inverse of the distance from r(e) to the corresponding eigenvalue.

1. Introduction.

1.1. The problem. In this paper we study the singularly perturbed two-point
boundary value problem of turning point type on the real interval [a, b]

(1.1a) L= —eu"+xp(x,e)u'+xq(x, e)u =r(e)u, ('=d/dx),
(1.1b) ula)=A, u(b)=B, a<0<b,

where ¢ is a small positive parameter, and where p, 1/p, g and r are sufficiently smooth
functions with respect to both parameters x and ¢. We shall treat the case p >0 only,

since the analysis for p <0 is analogous. Without loss of generality we can assume
p(0,0)=1 and

b 4]
(1.2) A:=j tp(t,())dtéj tp(t, 0) dt.
(1] a

This problem has some intriguing features due to the fact that the coefficient of 1’ in
equation (1.1a) changes sign in the interval. In the easier and well-analyzed case where
the coefficient of u' is of one sign and is positive (negative) throughout the interval, the
contribution to the solution coming from the prescribed boundary value at the right
(left) endpoint is exponentially small outside a small boundary layer near that endpoint;
cf.[11]or [12]. We note that “exponentially small”” means ‘‘of the order O(exp(—v/¢)),
€ > +0, for some y > 0. The analysis in this easier case transferred to problem (1.1)
suggests that the contribution from the boundary value at both endpoints is exponen-
tially small; hence the solution of problem (1.1) is exponentially small uniformly in
every compact subinterval of (a, b) and boundary layers are located at both endpoints.
However, this suggestion is not always true, as can be seen from the following example,

(1.3) —eu"+xu'—ru=0, u(@a)=A, u(l)=B, a=1,

which can be solved exactly in terms of parabolic cylinder functions or in terms of the
confluent hypergeometric functions ;Fy(—3r, 3, x*/2¢) and x,F, (3 —3r, 3, x*/2¢), cf. [5,
§ 2]. By well-known asymptotic formulas for these functions we indeed find exponential
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decay if r is not a nonnegative integer,
(1.4a)
u.(x)~Aexp{(a—x)/e}+Bexp{(x—1)/e}, e>+0andr#0,1,2, -,

where ~ means ‘‘asymptotically equivalent”.

However, if r is a nonnegative integer, one of the confluent hypergeometric
functions is equal to the rth Hermite polynomial and we find for e > +0 and r=
0,1,2,---:

Bx"+Aexp{(a—x)/e}, ifa<-—-1
IB+(=1)A)x"+3(B—(—-1)A)exp{—(x —1)*/2¢}, ifa=—-1.

We see that the solution of (1.3) does not decay at all in the exceptional case where
r=0,1,2, - - and that in general (if a # 1) one of the boundary layers disappears.

(1.4b) u,(x) ~{

1.2. History. In [2] Ackerberg and O’Malley draw attention to problem (1.1).
They establish exponential decay of its solution in the case r(0)#0,1,2,---. For
nonnegative integral values of r(0) they construct by the WKBJ method a formal
approximation, which does not decay for ¢ - +0. This approximation converges to a
solution of the reduced equation xpu'+ xqu = ru, whose magnitude is fixed by the
boundary condition u(b)=B if equality in (1.2) does not hold and by u(b)=
3(B+(—1)"A) otherwise. This phenomenon, that the solution of (1.1) does not decay
exponentially and converges to a definite nonzero solution of the reduced equation,
Ackerberg and O’Malley have called resonance. Their publication has drawn much
interest and has been followed by a large number of papers which study this
phenomenon of “resonance”’; e.g. see [3], [8], [9], [10] and the references there. These
papers steadily propose better approximations to the ‘“‘resonant’ solution of (1.1) and
more refined criteria for “resonance’ to occur, most derived by formal methods only
and not supported by proofs. For a review of these papers we refer to the introduction of
[10]. Olver constructs in [10] an approximation by linking together uniform approxi-
mations of two pairs of independent solutions of the equation. The boundary conditions
at a and b and the continuity conditions across the turning point yield four linear
equations which can be solved under certain conditions on r(¢). His final conclusion is
that for each nonnegative number » a function r(e) exists such that the approximation
and hence the solution itself shows ‘“resonance” (in the sense of Ackerberg and
O’Malley); moreover the “resonant” approximation remains valid if r(¢) is changed by
an amount not exceeding e "¢ with y > A and A as in (1.2). We remark (1) that the same
conclusion can be drawn from [5, Thm. 4.4 and Cor. 4.5], and (2) that the existence
proof does not (and cannot, as we shall explain later on) yield a method for construction
of such an r(e).

1.3. Re-evaluation of the problem. In the papers cited above the secondary
question “Under what conditions does the solution of (1.1) show resonance in the sense
of Ackerberg and O’Malley?” has obscured the original question “Can we find an
asymptotic approximation to the solution of (1.1) and how does it look like if 7(0) is a
nonnegative integer?”’; Ackerberg—-O’Malley-resonance has been considered as a
fundamental property of the solutions of equation (1.1). However, from the example

(1.3) we can read that the first question is not the best one to ask. If a = — 1, the solution
of (1.3)is
(15) w,(x, )= 3(A4 + B)tFA=rs 3 %7/ 2) x1FiG—3r;3/2; x°/2¢)

+3(A—-B)

1
2
Fi(—3r;3;1/2¢€) \Fi(G—3r;3/2;1/2¢) °



RESONANCE IN A SINGULAR PERTURBATION PROBLEM 3

provided the denominators are nonzero. These denominators, considered as functions
of r, have denumerably many simple zeros for each £ >0 and the zeros converge to the
nonnegative integers for £ > +0. Our first conclusion from this example is that a
solution of problem (1.1) need not exist, a fact that is not mentioned in any of the papers
cited above. The second conclusion is that it is not very interesting to ask for the
conditions under which the solution of (1.1) (if it exists) converges to a definite solution
of the reduced equation, since for every multiple of this limit we can ask the same
question. As a matter of fact, for any point xo € (0, 1), any nonnegative integer n and any
real number C we can find a function r(¢) with r(0) = n such that «, in the example (1.5)
satisfies u,(xo, r(¢)) = C, because n is the limit of a zero of a denominator; since the
restriction of problem (1.3) to (xo, 1) has no turning points, the well-known analysis
implies that u, (x, r(¢)) converges on (xo, 1) (pointwise) to that solution of the reduced
equation which takes the value C at x,. Clearly the interesting question is how the
mechanism works that provides solutions of any magnitude.

The answer to this question also can be read from the example (1.3) witha = —1.
The zeros of the denominators in (1.5) are the eigenvalues of the operator —ed 2/dx* +
xd/dx in #4(—1, 1) N ¥>(—1, 1). Let us denote these eigenvalues and the correspond-
ing eigenfunctions by (m(g), (/;k( -, €)) and let us assume that the eigenvalues are
ordered in increasing sense (i.e. Ar+1>> Ay ); they satisfy the relations

(1.6) —eg +x¢ = mde  and lim me(e) =k.

We define Z, to be the ordinary boundary layer terms, as given in (1.4a),
Z.(x)=Aexp{—(x+1)/e}+Bexp{(x—1)/¢}

and we expand the residue L. (u. — Z,) in the eigenfunctions,

(1.7) L.(u.—Z.) =Y Budx.
The solution u, satisfies

(1.8) u=2z,+y B
k=0 Tk —T
If 7, —r is bounded away from zero for all k, the infinite sum in (1.8) is small, as is the

residue in (1.7). However, if r(0) = n for some integer n, the nth term can be quite large
and we obtain the approximation

Bn ()il -, &)

e~Ze+ s
" T(e)—1(e)

e>+0 and r(0)=n.

This formula displays the mechanism at work in a resonant situation and it explains why
the solution is so extremely sensitive for small variations in r(g). It is clear that an
analogous formula can be given for the solution of (1.1). Problem (1.1) can be
considered as the equation for the steady state of a vibrating system and in such a setting
the phenomenon, that the solution grows beyond bound in the vicinity of an eigenvalue,
is commonly called resonance. From this point of view the phenomenon, which
Ackerberg and O’Malley have called resonance by chance (?), is a quite familiar
spectral effect. We have pointed at this connection to the spectrum already in [13, § 9].

1.4. Outline of the paper. The purpose of this paper is to construct a uniformly
valid approximation to the solution of problem (1.1), if it exists. The explanation of the
phenomenon of resonance clearly indicates the road to follow in order to arrive at such



4 P. P. N. bpE GROEN

an approximation. First we have to determine the eigenvalues of the operator L, acting
on ¥*(a, b)N ¥4 (a, b). Next we have to construct uniform approximations to the
corresponding eigenfunctions. Finally we have to estimate the coefficients in an
eigenfunction expansion of type (1.8) and we have to approximate the sum of the series,
since the infinite series itself hardly can be considered as a satisfactory approximation.
The techniques we shall use in our analysis are quite classical, namely the Rayleigh
quotient characterization of eigenvalues, Sturm—Liouville theory for eigenfunction
expansions, matched asymptotic expansions for the construction of approximations of
the eigenfunctions and the maximum principle for the proof of their validity; cf. [4] and
[12].

Our first result concerns the location of the eigenvalues. The eigenvalues are the
values of A for which the problem

(1.9) L.u=—eu"+xpu'+xqu=Au, u(a)=u(b)=0,

has a nontrivial solution. Sturm-Liouville theory implies that a denumerable set of
eigenvalues and eigenfunctions

{Ae(e), é(-,e)]k=0,1,2,---} with L.éx = Aiéi
exists; ordering these eigenvalues in an increasing sequence we find
(1.10) M(e)=k+0(e), fore- +0.

This result is already contained in [5] and [6], but the proof there is fairly complicated.
Here we shall present an easier proof, based only on the minimax and maximin
characterizations of the eigenvalues by Rayleigh’s quotient; cf. [4]. We transform
equation (1.9) to a selfadjoint form and we construct formal approximations of its
eigenfunctions. The maximum of Rayleigh’s quotient over the span of the first k of
these approximate eigenfunctions yields an upper estimate for A,_; and the minimum
over the orthogonal complement yields a lower estimate of A,. A good estimate of the
maximum is derived easily since the maximum is taken over a finite dimensional space.
An estimate of the minimum over the orthogonal complement, which is of infinite
dimension, is more complicate since the estimates of the eigenfunctions are not
uniform. We split this space into two subspaces such that in one of them Rayleigh’s
quotient is large enough to be estimated from below by the Rayleigh’s quotient of the
Hermite operator, cf. (1.3), whose eigenvalues are known, and such that the other
subspace is of finite dimension.

Once the convergence of the eigenvalues to well-separated limits is established, we
can expand the eigenvalues and the corresponding eigenfunctions of the symmetrized
problem in formal power series in powers of ¢. If p and q are €™ we can compute all
terms of these series by a formal asymptotic method which is analogous to the
“suppression of secular terms” in celestial mechanics. The coefficients in the power
series expansion of A, (e) are uniquely determined by the condition that nonpolynomial
solutions (which are exponentially large) have to be suppressed in every step of the
iteration. The validity of these series is proved by expansion of the residue of the
approximate eigenfunction in the true eigenfunctions of the symmetrized problem and
by use of well-known estimates for the coefficients of such eigenfunction expansions.
Transforming back to the original nonselfadjoint form we find an approximation of the
eigenfunction which is uniformly valid in the interior boundary layer of width O(¢'/?).

At both sides of this interior boundary layer we can match the interior expansion to
the regular expansion, whose lowest order term is the solution of the reduced equation
xpu'+xqu = Au. Both regular expansions are matched to the boundary conditions
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u(a)=u(b)=0 in ordinary boundary layers. The validity of the approximation on
[a, —e"*m] and [¢'*m, b] for some m >0 is proved by the maximum principle. We
shall restrict our computation of an asymptotic approximation of the eigenfunction to a
first order approximation, which outside the boundary layers has a relative error of the
order O(g'/?).

If r(e) is not equal to any eigenvalue, problem (1.1) has a unique solution U.. By
“matched asymptotic expansions” we construct a formal approximation Z., which
satisfies the boundary conditions (1.1b), and which is exponentially small in the interior
of the interval. Assuming that # is the nonnegative integer nearest to r(0), and using the
eigenfunction expansion as in (1.8) we finally obtain the result

Bn(s)é;(' ,8)

(1 VemZet o1

+ an exponentially small error,

where B,, is the coefficient of €, in the eigenfunction expansion of (L, —r)(U, — Z.). The
magnitude of the (resonant) eigenfunction term in (1.11) can be read from the formula

(1.12) max, Ba(e)én(x, €)= Ce ™2™ (14 0(£%), (e~ +0),

as=x=

where C does not depend on ¢ and A is given by (1.2). We see that the magnitude of the
resonant part of (1.11) is of order unity if the distance from r(e) to the nearest
eigenvalue A, (¢) is of the same order as (1.12) and that the resonant part vanishes if the
distance is of larger order.

Formula (1.11) together with the approximation of the eigenfunction é, and the
estimate of the coefficient B8, give a precise picture of the asymptotic behavior of the
solution of problem (1.1) in the neighborhood of an eigenvalue. Unfortunately this
picture inevitably contains the distance from r(¢) to the nearest eigenvalue. Since in
general no better approximation for an eigenvalue can be obtained than an asymptotic
(nonconvergent) power series in g, the exponentially small orders in the distance cannot
be detected (by asymptotic methods). Hence, if the asymptotic series of A,, and r do not
agree, the solution of (1.1) decays exponentially, but, if they agree, the magnitude of the
resonant part cannot be determined in general. Only in the exceptional case where a
solution of the equation L.u =ru happens to be known, which is normalized by
|u(0)]+|u'(0)] = 1 and which is bounded by some negative power of &£ uniformly with
respect to £ and x, can the magnitude of the resonant part be determined. Examples of
such a case are problem (1.3) and problem (1.1) with xq —r=0. Moreover, if in a
problem of type (1.1) the resonant part of the solution is of order unity, small changes in
eV 2p, q and r do not affect the magnitude of the resonant part in first order, provided
those changes are of an order smaller than (1.12) is, uniformly in x.

The methods employed here admit considerable generalizations, to the case where
the sign of p is negative, to the case where there are several turning points, where a
turning point is located at the boundary or where it is of higher order and to analogous
(elliptic) problems in several dimensions; cf. [6] and [7].

1.5. Notations. N, No, R and C are the sets of natural, nonnegative integral, real
and complex numbers. If I is an (open) interval in R, £*(I) denotes the set of square
integrable functions on I and #*(I) the subset of functions in ¥*(I) whose kth
derivative is still square integrable (k € N) . % (I) is the subset of '(I) of functions
which are zero at the endpoints of the interval I. If I refers to the interval (a, b) it is
dropped: in that case we shall write £ instead of #°(a, b), etc. The inner product in £°
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is denoted by (-, - ) and the norm by || - ||:
b
wo) = [ utpt)de, = 0.
If V" is a subspace of F?(I), then ¥"* denotes its orthogonal complement:
vt={ue LU)|(ux), v(x))=0forallve ¥}.

2. The eigenvalues and Rayleigh’s quotient. For the study of its eigenvalues
problem (1.9) does not have a very suitable form, since the differential equation is not
symmetric. This is amended by the transformation

(2.1) v(x,e)=ulx, ). (x), J.(x):=exp { “Elgj tp(t, €) dt];
(0]

it results in the equation

(2.2) —ev"+{x’p*/de +xq —3p —3xp'}v = Av, v(a)=v(b)=0.

We recall that p and q are €™ -functions of x and & such that

(2.3) p(x,e)Zpo>0, p(0,0)=1,

that because of assumption (1.2) J, satisfies the inequality
J(a)=T.(b)=e""*

and that A is a complex and ¢ a small positive real parameter.

Although the transformation (2.1) makes v exponentially small with respect to u
for all x #0, it is clear that u is an eigenfunction of (1.9) if and only if v is an
eigenfunction of (2.2); hence the eigenvalues of (1.9) and (2.2) coincide. Let us denote
the differential operator connected with equation (2.2) by T:

(2.4) T.u = —eu"+{x’p*/de +xq—3p—3xp'tu forall ue 5N ¥

It is well-known that the (symmetric) eigenvalue problem (2.2) has a denumerable set of
real eigenvalues for each ¢ > 0 and that this set is bounded from below. We shall denote
the eigenvalues of (2.2) by A.(g) with k € Ny, arranged in increasing order such that
Ak—1 <A forall k eN.

Rayleigh’s quotient for problem (2.2) is the quotient

R.(u) = (T.u, u)/(u, u).

Integrating the denominator once, we see that it is defined for all u € 5, provided u # 0.
The eigenvalues of (2.2) can be computed from Rayleigh’s quotient by the following
minimax and maximin characterizations:

(2.5a) Ae(e) = inf sup R.(u),

Ky, dimE=k+1 uc®u#0

(2.5b) Ae(e)=  sup inf R.(u).

Fc L’ dimFsk  ueF-NHKsu=0
In the minimax characterization (2.5a) the maximum of Rayleigh’s quotient in a
k + 1-dimensional subspace is minimized over all such subspaces and in the maximin
form (2.5b) the minimum of Rayleigh’s quotient in the orthogonal complement of a
k-dimensional subspace is maximized. The proof of these characterizations is straight-
forward using the (orthogonal) eigenfunctions; cf. [4, Chap. 6, § 1.4]. We remark that it
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is not necessary to maximize Rayleigh’s quotient in (2.5a) over all u € &; because of
linearity it suffices to maximize over all u € & satisfying |u| = ¢ for some ¢ > 0. The same
is true for the minimum in (2.5b). Moreover we remark that the maximum of Rayleigh’s
quotient over a subspace & and the minimum over the orthogonal complement of a
subspace & yield an upper and a lower bound for the eigenvalue under consideration
for each choice of & and %. The bounds become better as € and & are better
approximations of the span of the first kK +1 and k eigenfunctions.

The minimum over all subspaces & in (2.5a) is attained by the span of the
eigenfunctions belonging to the first k + 1 (counting from zero on) eigenvalues and the
maximum in (2.5b) by the span of the first k eigenfunctions. If I1, is a second operator of
the form (2.4), which satisfies

(2.6) (M,u, u)=(T.u,u) forallue o,
whose sets of eigenvalues and eigenfunctions are the sets
{mc(e)|keNo} and {yu(x, &)|k eNo}
such that 7, < 741 and I ¢y = i, then we have by (2.5b):
Ac(e)= inf (Tou, u)

uespan{yo, - * - W1} NI lull=1

2.7

= inf (Meu, u) = me(e).
uespan{y;lj=k},llull=1

3. Approximate eigenfunctions. Since estimates of eigenvalues by Rayleigh’s
quotient require approximations of the eigenfunctions, we define the functions y, by
(3.1) Xn(x, €) = exp (—x*/4e)H, (x/2e),

where H, is the nth Hermite polynomial. These functions are ‘‘approximate eigen-
functions” (or better: formal approximations of the eigenfunctions). We show first that
they are approximately orthogonal:

LEMMA 1. The functions x, satisfy for all n, m e Ny

(3.2) Otws Xom) = 7€) 22" n S + O( /> 7/>7™% exp (— b/2¢))}.

where 8, is the Kronecker delta. If w is strictly positive and has a piecewise continuous
first derivative, they satisfy for alln,m e Ny (m =n)

(33) (Xm WXm) = W(O)(2W3)1/22nn !{5nm + 0(31/2(n + 1))}9

and if w has a piecewise continuous second derivative they satisfy foralln, m e N (m =n)
with |n —m|#1

(3.4) Otms Wxm) = w(0)(27e) /2" n {8 ,m + O(en’+¢)}.
Proof. The well-known recurrence relations for the Hermite polynomials imply
(3.5) Xxn = (26)" 2 (Mxn-1+3xn+1) and  xn =(28) " 2(nxn-1=3xn+1)

and their orthogonality on R implies
o

X, £)xin(x, €) dt = (26)"% | exp (=), (0)Hin (o) d

—00 —

(3.6)
=Q2me)"*2" 18 m.
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Since in the left-hand side the integral over the tails x <a and x > b (with 0 <b =|a|) is
of the order

O(e' "> exp (—b%/2¢)),

this proves formula (3.2).
If the weight function w has a piecewise continuous derivative, it satisfies w(x) =
w(0)+O(x), (x > 0); hence (3.5) and (3.6) imply

WXy Xm) — W(0)(27€) /211278, 1 = (W = W(0)) X, Xom) + O+ )
= O(HxXn"”Xm")

and this implies (3.3). Formula (3.4) is proved in the same way; we remark that (3.4) is
not true for |n —m|=1. Q.E.D.

Next we show that y, is a formal approximation of an eigenfunction of T:
LEMMA 2. For every n, k € No, n = k, the approximate eigenfunctions satisfy

(3.7) I Texn — nxall? = O(e (n® + D)llxall),

O+ Dlxalllxel) ifn—k#1,
OC"*(n® + Dlxal el ifn—k =1.

Proof. Since yx,, satisfies the equation

(3.8) (T = 30 =|

—eu"+xu/4e —5u=nu
we find from the recurrence relations (3.5) by straightforward calculations
Toxn = nxn = (P> = 1)GR(1 = 1)Xn—2+Xn+2)
+{(n +D(P* =D +2(1=p) +x(p ~ 2P xn-

Since p=1+0(e)+0(x), Lemma 1 implies the estimates (3.7)-(3.8). Q.E.D.

Remark 1. Strictly speaking, the function y, is not in 95, since it is nonzero at the
endpoints a and b of the interval. However, it is of the orders O™ "? exp (—a’/4¢))
and O(e"'* exp (—b?/4¢)) there and we can easily amend this drawback by adding
suitable boundary layer corrections. The corrected function yx, is defined by

Xn (X, €) = xn(x, €) = xn(b, €)p(bx) exp {b(x —b)/2¢}
—xn(a, €)p(ax) exp{a(x —a)/2¢},

(3.9

(3.10)

where p is an infinitely differentiable cut-off function satisfying p(x)=0 if x <4 and
p(x)=1if x >3. The correction is of exponentially small order and can be disregarded in
the computations above; more precisely we find:

(3.11) (B> Kn) = 2me) 22" n B + O(e > ™2 exp (—b2/2¢))},
(3.12) - exn+(x*/4e —n =Rl = 0(c" ™" exp (—b*/2¢)),
(3.13)  (—egn+(x*/4e —n—2)%m Kn) = tb(2b%/€)" exp (— b/2¢)(1+O(¢)),
where t=1if b<—agandt=2if b= —a.

Remark 2. Since it is expedient to have an orthogonal set of approximate
eigenfunctions, we orthogonalize the set {{,|n € No} by the Gram-Schmidt process,
resulting in the set {x,, | # € No}. In view of formula (2.6) this orthogonalization adds to ¥,

only terms of the same exponentially small order, such that the Lemmas 1 and 2 remain
valid if y, is replaced by x, or ¥,.
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Remark 3. In view of the proof of convergence of the eigenvalues (Theorem 1) we
have chosen the functions x, such that they are approximate eigenfunctions for all

operators of type (2.4) at once. In § 7 we shall construct approximations of higher order,
which depend on the operator given.

4. An upper bound for the eigenvalues. In the minimax characterization (2.5a) we
can use as trial space € the span 7 of the first k + 1 approximate eigenfunctions

(4'1) LVk = span {YO’ i;ly T /\;k}

and for this choice we can compute an upper bound for A;.
LEMMA 3. The kth eigenvalue A () satisfies the upper estimate

4.2) M) =k +Cie(k+1)°

for some constant C, and for all k € No.
Proof. The lowest eigenvalue satisfies by (3.8):

Ao = (T.x0, Xo) = Cie

for some constant C;. As induction hypothesis we assume that the supremum of
Rayleigh’s quotient over 71 is bounded by

sup (Tou, u) =k — 1+ CkCe.

ueVie-1lull=1

A function v € ¥ can be written uniquely as the sum u + ty, for some ¢ € C such that
u € Vi1 and ||v|* = ||ul*+ ||x«|*. Formula (3.8) yields a constant C such that

(Te ) = (k + Cek %l
and
26(u, Togi) =26Ce 2k + Dllul Il = lull* + 2> C*(1 + k)1l
Hence we can reduce the supremum of Rayleigh’s quotient over ¥’ to a supremum over

ol/:k—li

sup R.(v)=sup sup R, (u+txi)

ve¥i teC ue¥Vi-1.llull=1

=sup { sup (Teu, u)+1

teC Lue¥i_1.llull=1
+ e+ eCk* + eCH(1+ KPP |1+ el )
=k +eC(k+1)°
This proves the estimate (4.2). Q.E.D.

5. The differential equation of Hermite. Before deriving a lower bound for the

eigenvalues of T, we shall study first the eigenvalues of the particular turning point
problem

(5.1) —eu"+xu'=Au, u(a)=u(b)=0;

we remark that the differential equation becomes Hermite’s differential equation by the
stretching x = &V2e. By transformation (2.1) we obtain the symmetrized form

(5.2) v = —ev"+x’v/4e —30 = v, v(a)=v(b)=0.
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Denoting the set of its eigenvalues by {m(g)| k € No}, arranged in increasing order, we
find by analogy to Lemma 3 from the estimates (3.11)-(3.13) the better upper bound for
e (e):

LEMMA 4. A constant C exists such that

m(e) =k +Ce " V2 702/

forall e >0.

For a lower bound we apply the stretching x = §~/Z to (5.2) and we obtain on the
interval (a/ N, g, b/ v €) the eigenvalue problem

(5.3) —ei+iv-tv=r0, ov(a/Ne)=v(b/Ve)=0, ( =d/df),

whose eigenvalues are identical to those of (5.2). We introduce the notations

b/Ve
oh= | u@ie) ds

%, = #5(a/Ve, b/Ne) and L, = F*(a/Ve, b/Ve);

moreover, we continue all elements of ¥, and %, by zero outside the interval (a/ N, ;,
b/\fs), such that we have the inclusions %, < %5 and ¥, <¥s provided 0<§ <e.
Rayleigh’s quotient for (5.3) is

Q.(u)= ', u)e+GEu—3uu), uek,

Its value does not change if (for fixed u € . ) the interval of integration is enlarged, i.e. it
satisfies

(5.4) Q.(u)=Qs(u) forallue¥.andse(0,¢).

In conjunction with the maximin characterization (2.5b) and the previous lemma we
obtain

LEMMA 5. For every k € Ng we have the inequality
(5.5) k=m(e)sk+Ce 12 e7b2/2e,

Proof. Assume 0< 8 <e¢. If # is a k-dimensional subspace of % then its restriction
to #. cannot have a larger dimension; moreover, if u € J,. is orthogonal to the
restriction of & to &%, it is orthogonal to % in %5 too; hence F*N¥. = F* N Hs.
Consequently formula (5.4) implies that the minimum of Qs(u) as u ranges over
F*N X5 cannot be larger than the minimum over % N %.. Taking the maxima over all
these minima we find

me(8) = sup inf Qs(u)

FoLsdimF=k ucF NKsu=0

= sup inf Q. (u)=mc(e);
Fo¥sdimF=k ucF NKq,u#0

hence 7 (e) cannot increase as £ decreases.

In the limit for € > +0 Rayleigh’s quotient Q. (u) of (5.3) tends to the Rayleigh
quotient of Hermite’s operator (which is well-known as the ‘“harmonic oscillator’ in
quantum mechanics), whose eigenvalues are known to be the nonnegative integers.
This implies that 7 (¢) is bounded below by k. Q.E.D.
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We define the function ¢ (x, €) to be the normalized eigenfunction of problem
(5.2) associated with the eigenvalue i (g), i.e.

i = mahe and gl =1.

It is well-known from Sturm-Liouville theory that they form a complete orthonormal
set in £?; in conjunction with the estimates (3.11)—(3.13) this implies:
LEMMA 6. For each k € Ng the eigenvalue and eigenfunction satisfy the estimates

(5.6a) me(e) =k +(t/k)2m) 2b* e TF 2 exp (= b7/26)(1+ O(e)),
(5.6b) I = Re i) Wl” = O™~ exp (= b°/2¢)).
Proof. We expand x in the eigenfunctions of II.,
Xi = _ZO (R ¥ and [l = _ZOI(Yk, el
j= j=
Since the previous lemma implies |k — (¢ )| =3 if j # k, we find from formula (3.12):

I = Koo WiWl* = Z#k (%> )

=0,j
=2 ¥ [(m(e) = K)o o) = 0L~ K)%el?

=0(e" " exp (—b%/2¢)).

This proves formula (5.6b); moreover, it shows that ||| = (X«, ¥«)* is of the same
order, hence

(g, 2= 5 (6) (o )’

= (&)Xl + O(e' ™" exp (—b7/2¢)).

In conjunction with (3.11) and (3.13) this implies (5.6a). Q.E.D.

Remark 1. Formula (5.6) agrees with [5, Formula (2.6)], which was derived by
different means.

Remark 2. The estimate (5.6b) implies that Lemma 2 remains valid if ¢, is
substituted for y, in the estimates (3.7)—(3.8).

6. A lower bound for the eigenvalues. According to the inequalities (2.6)—(2.7) the
lower bound on the eigenvalues of Hermite’s operator is shared by the eigenvalues of all
operators whose Rayleigh quotient is larger than Rayleigh’s quotient of Hermite’s
operator. This property we shall use in order to derive a lower bound for A, (g).

Explicitly we have

(6.1) (Tou, u) =¢llu'|*+ ((x*p*/4e + xq —3p —3xp")u, u).

Since we assumed p(x, €) =1+ 0(¢)+ O(x), the coefficient in the second term in the
right-hand side has a local minimum (provided & is small enough) at a point «a(¢) near
x =0, where it has the value —3+B(¢),

B(e) = x’p’/4e +xq —3p +3—5xD | x=aer;

a and B are both of the order O(¢) and the second derivative of the coefficient at a(¢) is
equal to 1+ O0(e). Without loss of generality we can assume a () = 0, since we can shift
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the x-variable over a distance a(g); the endpoints a and b are then shifted over the

same distance, but this does not change our asymptotic estimates. Thus we find that the
function p,

P(x, &) = dex 2(x%p?/4e +xq —3p +3—3xp' = B(e)),
satisfies
plx,e)=1+0(x)+0(¢) and P(x,e)=3po>0 (if ¢ is small enough).
This implies
(Teu, u) = ellu'|* + (x*pu/4e —3u + Bu, u)
(6.2) =3pofe|u'|P + (x*u/de —3u, u)}+ Gpo—3+B(e))ul?
= 3po(ILut, u)+ O(eulP).

Dividing by ||u|* we find in the right-hand side of the inequality the Rayleigh quotient of
I1.. Using this estimate we can find a satisfactory lower bound for A, (g):
THEOREM 1. For every k € Ny the eigenvalue A (¢) of T, satisfies the estimate

(6.3) () =k +0(ek®+¢).
Proof. We define the spaces ¥ and %, by
Vi =span{y;|jeNo,j=k} and W, =span{y;|jeNo, k=j<n}.

A lower bound for A.(¢) is obtained by minimizing Rayleigh’s quotient over %%, since
V% is (by definition) orthogonal to a k-dimensional space. We choose n to be the
smallest integer such that

inpo+ipo-i+Be) =k +1.

Each u € 7% can be written as the orthogonal sum u = u; + u, such that u; € %}, and
U € v,. By Lemma 5 and (6.2) we find

(6.4) inf R.(u2)=3npo+ipo—3+B.=k+1.
uze¥,

By analogy to formula (4.2) we can prove by induction

(6.5) inf R.(u1)=k—Cre(k®+1)

ule‘ka

and Lemma 2 and the second remark following Lemma 6 imply
6.6) 2(Tous, uz) = — Cae (k> + 1)||u |2

. = — C2e (k> + 1) ua|? ~ lual.
Formulae (6.4)~(6.6) now imply

A(e)=z  inf (T.u, u)

ue¥Villull=1

= inf inf inf  {tR.(u1)+(1—1)R. (uz) +2(T.us, us)}
NI

zk—Cie(k®+ 1)~ Cre(k*+1)2
This proves the lower estimate for Ax(e). Q.E.D.
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COROLLARY. Let ex(x, €) be the normalized eigenfunction of T, associated with the
eigenvalue A (g); then

(6.7) X — (xi €x)exl| = O (k).

Proof. The proof is analogous to the proof of Lemma 6.

Remark. From the proof of Theorem 1 we easily derive the following stability
property of the eigenvalues. If the coefficients p and xq—r of L. are changed by
amounts which are of the orders 0(¢ ?o'(¢)) and O(o (¢)) respectively uniformly in x
with &/ 2o-(s) =0(1), ¢ » +0, then Rayleigh’s quotient T, and hence the eigenvalues
change by the order O(o(e)) at most.

7. Higher order approximations of eigenvalues and eigenfunctions. Approxima-
tions of higher order of the eigenvalues and eigenfunctions can be computed most easily
from the original nonsymmetric equation (1.9). Since the leading term of the asymptotic
expansion of the nth eigenfunction é, = J'e, of (1.2) is equal to H, (x/ V2¢) (modulo a
constant factor), we can choose all approximants to be polynomials in & and x/x/ 2¢;
doing so, we need not bother about the boundary conditions in view of Remark 1 in § 3.
However, in order to prove that these formal computations yield the correct result, we
have to apply transformation (2.1) to the approximants and to operate with the
symmetric equation (2.2) as before.

In the differential equation (1.9) we introduce the substitution x = gﬁé and the
(formal) asymptotic expansions

© : . © . .
p(x,s)=1+‘,zopi,~x'“s’, Q(x,b‘):,zo%x's',
Li= ij=

(7.1)
én(f/\/ig, €)=s Z eni(f)si/2 s An(g)= Z )‘nfsi’
=0 i=0

1)

where e, o = H,, Ano = n and s.is a scaling factor. Collecting equal powers of ¢'/? and

setting their coefficients equal to zero we obtain the recursive system of equations
("=d/d¢):

l"‘l

2
- Z 2/\nien,m—2i

1

Enm — 2E6nm +2NC0m =
1

(7.2)

m—13m=1-i) d
+¥Y X 2§’+1(piifz_+qij>en,m—2i—i—1,

i=0  j=0 ¢
with the side condition that the solution e,,, has to be a polynomial. Since the leading
term e, o := H, is a polynomial of degree n which is even or odd if » is even or odd, we
see by induction (1), that the right-hand side of (7.2) is a polynomial of degree n +m
which is even or odd if n+m is even or odd, (2) that this right-hand side can be
expanded in a finite sum of Hermite polynomials, which does not contain H,, if m is odd
and (3) that A,,, can be chosen such that the coefficient of H, in the expansion of the
right-hand side is zero, if m is even. We conclude from this that for each m € N a unique
scalar A, exists such that the equation (7.2) has a polynomial solution (which is unique
too). This procedure of solving e,,, and A,,, recursively from (7.2) under the side
condition that the solution has to be a polynomial is known in other contexts as the
“suppression of secular terms”’.

In order to prove that we have obtained the correct asymptotic series for eigen-

value and eigenfunction, we apply the transformation (2.1) and we define the partial
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sums A, and E,; by

k .
Ank(e) = Z /\niely
j=0

1
k .
Eu(x,e) =5 Y €% en(x/V26)Jc(x)
i=0
and we choose the scaling factor s such that ||E,. || = 1. From the construction of the
functions e,; we see that the partial sums satisfy

(7.3) I(T. = Ank(€)Enzea( - el = O™, (s> +0),

since the remainder is a polynomial in x/ V2¢e of degree n +2k +1 multiplied by gkt

and by the exponential. Expanding E,,«+1 in the set of orthonormal eigenfunctions
{ei I] € NO} of Tsa

0 0
En,2k+1 = ‘ZO Ynki€i WIth .20 I'Ynkilz = "En,2k+1”2,
i= i=
we find by Theorem 1:

(T = Anic) En 2l = .ZO 1A = Ak | Yt
P

©
=2 Z |y”kj|2+|A"—Ank|2|ynki|2= 0(€2k+2).

i=0,j#n
Since ||E,, 2¢+1]| is of order unity this implies
(7.4) An(e)=Am(e)+O0(e*™") and |Enzie1— (Enzis1, €)eill= 0"

for all k, n € Ny. Since each u € #' satisfies (Sobolev)

(7.52) max |u () = 2llullull+2llul’/ (b - a)
a<x<b

and since a positive constant Cexists, such that
(7.5b) )P = 4e | Tere — Aull+(C/e + A Dllull}

for all u € %> and for all A € C, cf. [6, chap. 2], the estimate of the error in E,, 2 +1 is valid
in the maximum norm too. Summing up we have derived:

THEOREM 2. The eigenvalues and eigenfunctions A, (¢) and e, (x, €) of the operator
T. have for ¢ > +0 the asymptotic series expansions

(7.6) An(e)=n+ ij &' Ay
(1.7) en(x, £) = sJe(x){H,,(x/\/-2_e-) + 3 e e,,,-(x/@)},

where the coefficients are determined recursively from the system of equations (7.2).
Explicit computation shows

Ane = +e{3n%p10+(2n + 1)g10— 12n°p3o — (121 +2)poogoo— 2qa0} + O(£7).

The formal series expansion of é, in (7.1), from which (7.7) is derived, is not
asymptotic in the whole interval [a, b]. Since the jth coefficient e,; is a polynomial in
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E=x/v 2¢ of degree n +j, the jth term is of the order O(se ~">x"*") and hence all terms
are of the same order of magnitude for fixed x # 0 and for £ »+0. In (7.7) it is the
exponential factor J, that makes the series asymptotic. The formal series expansion of
é, is asymptotic only in an e-dependent neighborhood of the point x =0 whose
diameter shrinks to zero for e -» +0. Theorem 2 implies that this series is asymptotically
correct in a neighborhood whose diameter is of the order 0(e'/?) only.

For a better approximation of é, outside a neighborhood of x = 0 we construct the
regular expansions in the subdomains [a, —e°®] and [¢°, b] for some & € (0, 3]. In these
regions we expand é, and the coefficients of the differential equation into the formal
power series

éux,8)= Y v,  pre)= Y ep(x), qx,e)= ¥ e'qu(x);
k=0 k=0 k=0

substituting them in the differential equation and collecting equal powers of £ we obtain
the system of equations

k
(7.8) (xpod/dx +xqo—n)vnk = Vn—1 — X (xp;d/dx +xq; = Apj)Unk—j.

ji=1

The constants of integration are obtained from matching to the inner expansion
obtained before. The lowest order term v, is

Uno(X) = Crox" exp { L (n —npo(t) —tqo(t)) dt/ tPo(t)};
because po(0) = 1 this function is € and satisfies

(7.9 Vno(X) =cCnox"(1+0(x))  (x~>0).

For matching we substitute the intermediate variable ¢ = xe ~° = &' with 8 (0, %)
in both expansions for ¢, and we expand both series again into powers of ¢. Since the
leading terms of both series must agree, we find

(7.10) Cnogn&;n =s21/2n£n8n8—n/2 $ Cn0=2n/2ssn/2.

The regular expansion of ¢, is matched to the boundary conditions é,(a, &)=
én(b, £) =01in ordinary boundary layers. In the boundary layer at x = b we substitute the
local variable 0 = o, (x)/e, where o is € and satisfies

(7.11a) o,>0 and op(x)=x—-b+0((x—b)*) forx-b,

and we expand the solution and the coefficients of the differential equation in (formal)
power series in ¢:

© . © ~ . et ~ .
én(x, £)= ZO e'wi(0),  xp(x,e)= ZO pi(0)e',  xq(x,e)= ZO Gi(6)e".
i= i= i=
This results in the system of differential equations

k

(711b) "Wzk +ﬁoW:‘k = — 2 (ﬁ,d/d() +ci,~_1+)\,,’,~_1)w,,,k_,~ ('=d/d0)
j=1

with the matching conditions

(7.11¢) Wa(0)= —v,(b) and lim w,,(0)=0.

§->—00
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Since po = bp(b, 0), the lowest order term of this expansion is
Wno(0) = — v,0(b) exp {bp (b, 0)6}.

Remark. We could have chosen 6 =(x —b)/e as the boundary layer variable;
however, in order to have a better control over the decay of the boundary layer
correction w in a neighborhood of the boundary layer we prefer to have some extra
freedom in 6. Outside the boundary layer we cut the correction off multiplying it by
p(bx), where p is a € -function satisfying p(x) =0 if x <fand p(x)=1if x>3.

In the boundary layer at x =a we construct analogously the formal expansion
e, =Y.' W,;; clearly we find

Wao(n) = —vno(a) exp{—ap(a, 0)n},  en = ou(x)=x—a+0((x—a)’).
Thus we have constructed a formal approximation for the nth eigenfunction é, of (1.2).
The lowest order term of this approximation is F,o,
Fuolx, €) = sH,(x/Y2€) + 0a0(x) = caox" + p(bx)Wno(05(x)/ €) + p(ax)Wno(0a (x)/ £);

the term c,ox" is subtracted since it is contained in sH,, and in v,.,¢ and it is counted twice
otherwise. We shall prove the validity of this approximation with the aid of the
following consequence of the maximum principle:

LEMMA 7. Let n €N and r € R satisfy r = n and let m € R be larger than the largest
zero of H,(x/ V2). If a constant M exists such that the function z satisfies

(7.12a) |—ez"+xpz' +xqz —rz| =Me "?*x"  forall x e[me'’?, b],
(7.12b) lz(e'’m)|=Mm" and |z(b)|=Me "?b",

then a constant N exists such that
Ne
(7.12¢) |2(x)| g{
Ne

for all x € [me 12 p.
Proof. We choose the barrier function W,:
W, (x, s)2=sH,,(x/\/25) +0,0(x) —Cnox” ifn#r,
W, (x, €) = (sH, (x/\/2_e) +0no(x) — Ccrox™) log (2 x/M).
From the computations above we easily find positive constants d and D such that

—n/2 .
n2xn ifr#n,

2x"loge| ifr=n,

(7.13a)

n_—n/2 .
n_-n/2 - sDx"e " |loge| ifr=n,
(713b) dx"e = W,(x, E)_{sDxng_n/2 ifr<n,
sdx"e "? if r=n,
(7.13C) (Le _r)W é{ n_ —n/2 .
sd(n—r)x"e ifr<n,

provided ¢ is sufficiently small and ¢ 21 < x = b. According to the maximum principle
it follows from (7.12a) and (7.13c) that (— MW, +sdz)/W, cannot have positive
maxima in (¢'/*m, b). Since (7.12b) and (7.13b) imply that they are negative at

x=¢"?m and at x =b, they are negative everywhere. If r#n we use the same

argument. Q.E.D.

THEOREM 3. A constant C exists, such that the n-th eigenfunction é, of problem (1.2)
satisfies the estimate

(7.14) 16, (x, €)= Foo(x, £)| =sC(1+x"e e *|log €|

uniformly for all x €[a, b].
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Proof. Theorem 2 and formula (7.9) imply that for each m > 0 a constant C,, exists,
such that

|€,(x, €)= Fpo(x, €)|= Cne'’?, provided |x|=me'/?;
moreover, since e, (b, €) = F, (b, €) =0, condition (7.12b) is satisfied. From the con-
struction of the approximation it follows that

(Ls —/\n)(én _FnO'" €Wn1) = @(S&‘ l/2—n/2xn)

and that w,,; is of the same order as w, is; hence to the subinterval (e v ’m, b) we can
apply the previous lemma (with r = n). To the subinterval (a, — ¢ 2) we can apply the
same argument. Q.E.D.

In order to compute higher order terms of the expansion of é, we must solve (7.8)
(and (7.11), but this is well-known) recursively and match each term to the inner
expansion by ‘‘intermediate matching”’; cf. Eckhaus [12]. Having computed the regular
expansion up to the index j — 1, we must verify that the jth equation has a solution which
is €™ at x =0; this is guaranteed by the fact that the coefficient of x" in the Taylor
series expansion at x = 0 of the right-hand side in the equation (7.8) is made zero by the
choice of A, in (7.2); otherwise the solution would contain a term of the order
O(x" log x) (x » 0). For the matching we substitute the intermediate variable = xe =
&e 1278 with0< 8 <3 in Z(:=053 k/2g « and in Zlk=0€ “nk and we expand the new series
in powers of & up to the order +(s¢’ ~"8). the constant of integration, which is in the term
of the order O(se’~"®) is now determined by the condition that both series must agree up
to this order. The proof of validity is analogous to the proof given above.

The approximation for é,, we have constructed, is such that the relative error is
uniform outside the boundary layers, i.e. if a + me <x < —&'/>M and if e’M<x<
b — me for sufficiently large constants M and m. Hence we obtain by transformation
(2.1) an approximation of e, with a good relative error, which is better than (7.7) is.
However, its Rayleigh quotient does not yield a better approximation of the cor-
responding eigenvalue, since it differs from (7.6) by exponentially small terms only,
which are too small to be proved correct, unless the asymptotic series happens to
converge. In Lemma 6 we have given an example in which the dominant asymptotic

series of the eigenvalues terminates, such that exponentially small terms can be
computed.

8. Exponential decay and resonance. Having established the conditions under
which the solution of the boundary value problem (1.1) exists and 1s unique, we can
study the asymptotic behavior of this solution.

The construction of a formal asymptotic approximation to the solution U, of (1.1)
is analogous to the construction of the approximation of é, in the preceding section.
Now we assume that the inner and the regular expansions are zero and hence that the
approximation consist of boundary layer terms only. As in (7.11) we substitute in the
boundary layer at x = b the local variable 8 = 0,(x)/e and we expand everything in
formal power series in ¢:

U.(x)=Y e'2;(0), xp=Y¢'p, xq=Y¢e'd, rie)=Ye'r
Hence, we obtain the system of differential equations

k
(8.1 —Zk +Pozi=— 21 (Did/d6 + Gj—1—1i-1)Zk—;
i
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with the boundary conditions

zo(b)=B, z¢(b)=0 (k=1) and lim 2.(6)=0 (k=0).

6->—

The lowest order term is

8.2) zo(0) = B exp {bp(b, 0)8}

and higher order terms are computed easily; since p; and g; are polynomials in £ of
degree j, z is equal to a polynomial in £ of degree 2k multiplied by exp (bp (b, 0)8) and
constants C exists such that each partial sum satisfies for all § =0:

(8.3) (L. —r(¢)) ‘_Z £'2,(8)| = £*Ci|B|(1+ 6%*) exp (bp(b, 0)6).

In the same way we construct at x = a the boundary layer expansion

[s o]

U.(x)= Y, eié‘,-(n) withen =o,(x)=x—a +0((x-a)2),
j=0

(8.4) ,
Zo(n) = A exp {ap(a, 0)n},

which satisfies an estimate analogous to (8.6). So we have constructed the formal
approximation z¥ of U,:

8.5) 25w = 5 oba() +p(an)?o)

where p is a € cut-off function (p(x) =0 if x <} and p(x) =1 if x >3). Exploiting the
relation T.J.u =J.L.u between T, and L. and the eigenfunction expansion of T, we
prove the validity of this formal approximation:

THEOREM 4, Let n € N be the nonnegative integer that is nearest to r(0) and let U, be
the solution of problem (1.1). The formal approximation Z X satisfies

én(x, €)

An(e)—r(e)

{ O(Ac*J.(a))+ OB T (b)T:' (x)) ifx=0,
O(Be"J, (b)) + O(Ae"T,(a)T;" (x)) ifx=0,

whereé, = J e, is the n-th eigenfunction of problem (1.9) and where v is the lowest order
term of the regular expansion of é,, cf. (7.9),

U.(x)=Z%5(x)+
(8.6)

{Bbp(b)J2 (b)vao(b) + Alal p(a)J (@)vno(a)}(1+ O(Ve))

Ono(x) = (n1V2me) 225" exp ” (n—np(t,0)—tq(t, 0)) dt/1p(s, 0)}(1 +0(¢))
0
forx #0 and ¢ » +0.

Proof. Let U2 be the solution of (1.1) if A = 0. The construction (8.1) implies that
the error D'E‘,

k .
Di(x) = U(x)~ T &'p(bx)zi(os(x)/e)

isan element of #5 N 2. Hence, J.D* can be expanded in the eigenfunctions of T, and
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its component orthogonal to e, satisfies by formula (8.3) and Theorem 1:

[J.Df —(J.D% een = ¥ |(J.DE e)

j=0,j#n

o

= OZ |J.(L. —r)D¥, &)/ (A; = 1)
j=0,j#n

=L =nDe|P = 0(***" 72 (b)).
Sobolev’s inequality (7.5) now implies existence of a constant C such that

. (x)D¥(x)— (J.D¥, en)en(x, £)| = Ce*J.(b)

for all x € [a, b]. In particular, this is true if x = e'?m for some m e R, where we have
J.(e"*m)=0(1) for £ > +0; since we also have (L, —r)D¥ =0 for x =0 we can apply
Lemma 7 to the restriction of D* to [a, —¢ 1/ 2m]. Hence, the component of D*
orthogonal to J.e, satisfies the estimate

O(Be*J.(b)T:  (x)) ifx=0,

8.7 D¥(x)— (D J.e.)en(x, ={
®7) ()= en%: ) =1 0 (B4, () if x <0,
uniformly for all x € [a, b].

In order to compute the inner product (J.D k e,,) we choose the function o in the
boundary layer variable as follows:

(8.82) oy(x)=x—b—u(x—b)> withu=v—3(p(b,0)+bp'(b,0))/bp(b, 0).

If v is a sufficiently large positive number this implies
b
®85) [ 00,0 di+bp(b, 00 (x) = ~plx ~ b +6((x =) <0

for all x €[0, b). Hence, we find by (7.14)
(JeD’eca en) = —(JE(LE —r)ZO(Ub/a)a en)/(An(e) —r(a))(l + 0(8))

__Bbp(b)J2 (b)vno(b)
e(An(e)—r(e))

=Bbp(b)J2 (b)vno(b)/(An(e) = F(e))(1+OFVe)).

For the solution U2 of (1.1) with B = 0 we can derive estimates analogous to (8.7) and
(8.9); since U, = U2 + U?Z, this implies formula (8.6). Q.E.D.

Remark. In fact we have used in the proof the generalized eigenfunction expansion
in the biorthogonal series {J.e,} and {J; e, } of eigenfunctions of L, and its adjoint L¥.

This theorem gives all information we want about the solution U,. We see from
(8.6) and (7.14) that U, decays exponentially fast in the interior of the interval if the
distance between r(e) and the nearest eigenvalue of T, satisfies condition (1.4).
Moreover, it gives a good estimate of the magnitude (and the form) of the resonance and
it displays exactly how the resonant part of the solution explodes if 7(e) approaches the
eigenvalue sufficiently fast. Unfortunately it is in general not possible to determine
exponentially small terms in the asymptotic expansion of A,(¢); hence, in general it
remains unknown whether or not the denominator A,,(¢) —r(¢) in (8.6) is smaller than
the numerator.

In the special case of the Hermite operator (5.1) the exact solution can be
determined, e.g. in confluent hypergeometric functions. Its asymptotic expansion
agrees with formulae (5.6a) and (8.6); cf. [5, formula (2.7a, b, ¢, d)].

b
(8.9) J e Ty (x —b)+O(e +|x — b)) dx
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Another example in which we can approximate accurately the resonant solution
occurs near the smallest eigenvalue, when the coeflicient g is equal to zero. In the
particular eigenvalue problem

(8.10) —eu"+xpu' = Au, u(@)=ub)=0

the inner and regular expansions of €, reduce to only one term, namely €o = constant.
By Theorem 3 we then find the uniform approximation é, = Foo(1 + O(e)), where

Foo(x, €)= s{1—p(bx) exp (bp(b, 0)os(x)/e) — p(ax) exp (ap(a, 0)oa(x)/e)}.
Rayleigh’s quotient of J.Fyo is (by analogy to (8.9))
(T Foo, J.Foo) /Fool? = 2me) /> (L Foo, J 2Fo0)(1+ O0(Ve))
= 2me) V{bp(b)T? (b) +lalp(a)T? (@)} (1 +0(e)),

if the functions o, and o3, in the boundary layer variable are chosen as in (8.8). Since Fyo
satisfies

| TJ. Fool® = |J.LeFool* = O(e JZ (b)) = O(e'* J2 (b)|Fooll®),
we find from the eigenfunction expansion of J.Fyo
(8.11) Ao(e) = 2me) " *{bp(b)T2 (b) +|a| p(a)T? (@)} (1 +O(e))

in the same way as in Lemma 6. By formula (8.6) we find for the solution U, of the
boundary value problem

eu"+xp(x,e)u'=0, u(a)=A, u(b)=B

the result
(8.12a) U.(x)=B+(B—A) exp {ap(a, 0)(x —a)} + O(Ve).
provided
Lﬂ tp(t,0) dt > Lb tp(t, 0) dt,
cf. (1.2), and

.12y V)= P(0)B —ap(@A+ap(a)(A—B) exp (bp (b, 0)x ~b)
| +bp(b)(A—B) exp (ap(a, 0)(x @)}/ (bp(b) ~ ap(a)) + O(Ve).
provided both integrals are equal.

9. Generalizations and related problems.

a. Imposing on problem (1.1) the condition “p strictly negative” instead of “‘p
positive” we obtain a problem which is intimately related to problem (1.1). Such a type
of problem is represented by the adjoint of (1.1a)

(9.1a) L¥u= —eu"—xpu'+(xq—p—xp')u = ru.
(9.1b) u(a)=A and u(b)=B.

Clearly its eigenvalues are equal to the eigenvalues of (1.2) and the eigenfunction
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connected to Ar(g) is J.ex. If r(0) # n the solution u, of (9.1) satisfies

A exp { r w(t) dt}(l +0(ex7?), ifx<0,

9.2) g (x) = N
B exp ” w() dt}(l +0(ex™), ifx>0,

b

where w(t):={tq(t, 0)—p(s, 0)—tp'(t, 0)— r(0)}/tp(t¢, 0); cf. [7, Thm. 3.15]. If r(0) = n, we
have to add a multiple of J.e,/((A.(¢))—r(e)) as before. Due to the exponentially
decaying nature of J, this resonant part is dominant only in a subinterval (containing
x = 0) whose diameter depends on the magnitude of 1/|A, —r|; if 1/|A, —r| = 0(¢*) for
some B >0, then the diameter of this subinterval is of the order 0(e'? log &).

b. We can add to the differential equations (1.1) and (9.1) an inhomogeneous term
f and construct an asymptotic approximation to the solution, provided r(0) is not equal
to the limit of an eigenvalue.

In (9.1) the leading term of the outer expansion is the solution of the reduced
equation, which satisfies the boundary values at a and b. In order to prove convergence
for r(0) > n = 0 we have to embed the problem in the negative Sobolev space # " !and
to prove first convergence in weak sense; afterwards we can show convergence in
stronger sense by interpolation; cf. [5] and [6].

In (1.1) the leading term of the outer expansion is that solution of the reduced
equation that is continuous at x = 0. This solution is an analytic function of r(0) which
can be continued analytically in the positive halfplane up to the line Re r(0)=n,
provided f has n derivatives at x = 0 and which has poles at the points r(0) = k € Ny (this
continuation is the smoothest solution of the reduced equation). In order to prove
convergence for r(0)>n =0 we have to restrict the problem to the positive Sobolev
space ¥""' (i.e. to prove convergence of the nth derivative first); cf. [6] and [1].
Alternatively we can use the technique by which Theorem 4 has been proved:
transform the error by (2.1), expand it in the eigenfunctions of T, resulting in a
max-norm estimate in an 0(e'"*)-neighborhood around x = 0 and apply Lemma 7 for an
estimate on the remaining part of the interval.

¢. If a turning point is located at the boundary point a, the boundary condition
u(a)=0 eliminates the approximate eigenfunctions which have an even index and
hence it also eliminates the associated eigenvalues.

d. If the interval (a, b) contains several turning points, i.e. if we study the problem
(9.3) —eu"+pu'+xqu = ru, u(a)=A, u(b)=B,

where p has several distinct zeros in [a, b], we can do exactly the same as before. Each
turning point gives rise to a denumerable set of eigenvalues, which satisfy Theorem 1 (or
the analogous result for problem (9.1)) and the spectrum is the union of these sets. In
order to generalize the proof of Theorem 1 to this case we have only to perform a
transformation analogous to (2.1) and to construct a complete set of approximate
eigenfunctions for each turning point. The construction (and proof) of asymptotic
approximations of the solutions is analogous to the cases sketched above.

e. If the interval contains a turning point of higher order or if two (or more) simple
turning points coalesce in the limit for ¢ > + 0, i.e. if p(x, 0) has a multiple zero, then the
spacing between the eigenvalues tends to zero for ¢ » +0 and the set of eigenvalues
tends to a dense subset of the positive real axis. In order to prove such a result we impose
on the coefficients p of (9.3) the more general condition

Blx,0)=x|x|""'(1+0(e)) or p(x,0)=]|x|"(1+0()).
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To this problem we apply the analogue of the symmetrizing transformation (2.1), which
results in the equation

(9.4) —ev"+p*v/4e —3p'v +xqU = Av, v(a)=v(b)=0.

If 0=v»<1, its Rayleigh quotient is bounded from below by an arbitrarily large
constant if £ is small enough, such that all eigenvalues vanish at infinity in the limit for
e->+0. If v>1, we substitute x =¢£"?""¢ and we multiply the equation (9.4) by
¥ V/¢*Y Comparing the Rayleigh quotient of the resulting equation to the Rayleigh
quotient of Hermite’s operator (cf. § 5) we can show that all eigenvalues of (9.4) tend to
zero with the order 0(¢® /®*") and that their spacing diminishes with the same
factor. For more details see [7].

f. By analogous methods we can attack the elliptic singularly perturbed boundary
value problem on bounded domain G € R".

eLu+ Y pidu/dx;+qu=0, ujsc prescribed,
i=1

where L is a uniformly elliptic operator and where the vector p has an isolated zero with
a nonzero Jacobian; cf. [6, chaps. 4, 5, 6] and [14].
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CHARACTERIZATION OF CONTINUOUS SELECTIONS
FOR THE METRIC PROJECTION FOR
GENERALIZED SPLINES*

MANFRED SOMMERY

Abstract. In this paper we give a characterization of those generalized spline spaces which admit
continuous selections for the metric projection. We denote by generalized splines those weak Chebyshev
spaces which can be decomposed in Chebyshev spaces by finitely many knots. This characterization is a partial
solution of a problem raised by Lazar-Morris~-Wulbert and generalizes a result of Niirnberger-Sommer
established for polynomial splines. For constructing a continuous selection we show some properties of
generalized splines. We prove an interpolation theorem and give a characterization of the existence of best
approximations. These results generalize in a certain sense results of Karlin, Rice and Schumaker established
for polynomial splines.

Introduction. If G is a nonempty subset of a normed linear space E, then for each f
in E we define Ps(f):={goe G| ||f —goll=inf {| f— gl |g € G}} which is called the set of
best approximations of f from G. Pg defines a set-valued mapping of E into 2 which in
the literature is called the metric projection onto G. A continuous mapping s of E into G
is called a continuous selection for the metric projection Pg(or, more briefly, continuous
selection) if s(f) is in Pg(f) for each f in E.

In this paper we treat the problem of the existence of continuous selections for n
dimensional subspaces G of C[a, b], with C[a, b] as usual the Banach space of
real-valued continuous functions on [a, »] under the uniform norm.

Lazar, Morris and Wulbert [7] have been the first to characterize those one
dimensional subspaces G of C(X), X compact, which admit a continuous selection.
They have raised the problem of characterizing the corresponding n-dimensional
subspaces.

With new methods and in the setting of weak Chebyshev subspaces Niirnberger
and Sommer [9] have established the existence of continuous selections for a subclass of
those weak Chebyshev subspaces of C[a, b] whose nonzero elements have no zero
intervals. From this, there follows a result of Brown [2] for five dimensional subspaces
of C[—1, 1]. Combining the result in [9] with recent results of Sommer [14] and Sommer
and Strauss [16] we get a characterization of the spaces which have continuous
selections from among the n-dimensional weak Chebyshev subspaces G of Cla, b]
whose nonzero elements have no zero intervals:

There exists a continuous selection for G if and only if each g in G, g#0, has at

most n — 1 distinct zeros on [a, b]\{xo} where xo only depends on G.

Recently, Niirnberger [8] has shown that the weak Chebyshev property is necessary for
the existence of continuous selections for subspaces G of C[a, b]. Thus the above
formulated problem of Lazar-Morris—Wulbert is solved for all n-dimensional
subspaces G of C[a, b] except for the following case: G is weak Chebyshev and there
exists at least one nonzero g in G vanishing on intervals. We denote this subclass of the
class of the n-dimensional weak Chebyshev spaces by Z,.

For special elements of &%, the problem of Lazar-Morris—Wulbert has been treated
by Niirnberger and Sommer [10] and Sommer [13]. Niirnberger and Sommer [10] have
given a characterization of those spline spaces which admit continuous selections and
Sommer [13] has given a characterization of those 1-Chebyshev spaces which also

* Received by the editors May 25, 1978, and in revised form December 4, 1978.
 Institut fiir Angewandte Mathematik der Universitit Erlangen-Niirnberg, Erlangen, West Germany.
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admit continuous selections. Spline spaces and also special 1-Chebyshev spaces are
elements of %,.

In this paper we examine the problem of Lazar-Morris—Wulbert for the elements
of Z,. We define a great subclass ¥, of %, consisting of all n-dimensional weak
Chebyshev spaces G which can be decomposed in Chebyshev spaces by a finite set of
knots (see Sommer [15]). Therefore, we may denote these spaces by generalized
splines. Since the spline spaces with dimension # are elements of ¥, and the splines are
the prototypes of the weak Chebyshev spaces [6], the class ¥, seems to be the most
important subclass of the class of the weak Chebyshev spaces. But there are also many
elements of %, which are not elements of ¥,,. We give a complete characterization of
those spaces G in ¥, which admit continuous selections. We show that a continuous
selection for G exists if and only if the following conditions are satisfied:

(*) No nonzero g in G has more than one zero interval in [a, b] and the number of the
boundary zeros of g is bounded in a certain sense.

In order to prove the characterization we first prove an interpolation property and
a characterization theorem for best approximations for any G in ¥, satisfying condition
(*). From these theorems there follow for a special class of spline spaces results of Karlin
[5, p. 503], Rice [11, p. 152] and Schumaker [12] established for all spline spaces. By
using our results we are able to construct continuous selections provided that condition
(*) is satisfied.

The construction of the selection is highly local and based on local alternation
elements whose local uniqueness is guaranteed by condition (*).

If for any G in ¥, condition (*) is not satisfied, then we are able to show the
nonexistence of a continuous selection applying a fundamental lemma of Lazar-
Morris—Wulbert.

Our construction of a continuous selection is based on the construction of a
continuous selection for splines established by Niirnberger and Sommer [10]. While in
that paper the authors have been able to use well known results from spline theory, we
have at first in this paper to establish some results about the elements of 7,,.

Finally we show that from our characterization it follows the characterization of
continuous selections for splines established in [10]: There exists a continuous selection
for splines of degree m with k fixed knots (m+k+1=n)if andonlyif k =m+1. We
also apply our characterization theorem to other special elements of ¥, namely to the
continuously composed Chebyshev spaces and get a characterization of the existence of
continuous selections for those spaces.

We also show by examples that not all G in 7, have the same behavior as the spline
functions. Therefore, the class ¥}, does not only consist of those weak Chebyshev spaces
which have the same properties as the splines. This statement is also verified by a result
of Sommer [15] having shown that there are elements of ¥, which are not uniqueness
spaces in the L;-norm, while L;-uniqueness for spline spaces is always satisfied.

1. Preliminaries. In the following let G be an n-dimensional subspace of C[a, b].

DEFINITION 1.1. G is called Chebyshev if each g in G has at most # — 1 zeros on
[a, b].

G is called weak Chebyshev if each g in G has at most n — 1 changes of sign, i.e.
there do not exist points a = xo<x;<::-<x,=b such that g(x;) g(x;+1) <O for
i=0,---,n—1.

We denote the class of all n-dimensional weak Chebyshev subspaces of C[a, b] by
W

Jones and Karlovitz [4] have characterized the elements of %,,. For this charac-
terization we need the following definition:
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DerINITION 1.2, If f is in C[a, b], then g in Ps(f) is called an alternation element
(AE) ‘of f if there exist n+1 distinct points a Sxo<x;<---<x,=b such that
e(-1)'(f-g)x)=|f—gll,i=0,--,n e==x1.The points xo, - - -, x, are called alter-
nating extreme points of f—g.

Jones and Karlovitz [4] have proved the following theorem:

THEOREM 1.3. The following statements are equivalent:

1) GisinW,.

(ii) For each fin Cla, b] there exists at least one AE in Ps(f).

(iii) Given a =x0<x1<-+ <xp-1<Xx,=b there exists a g in G, g#0, such that
(—1)i+1g(x) =0, x 1 <x<x,i=1,--+,n.

(iv) If g1,82," "+, 8n is a basis of G, then a=t;<t,<-- - <t,=b, a=51<s,<
s <s, =bimply

det |gi(¢)| det |gi(s;)| = 0.

Applying this theorem and Definition 1.1 it is easy to show:

LemMA 1.4. (i) If G is weak Chebyshev, then there exists a g in G with exactly n — 1
changes of sign on (a, b);

(ii) If G is not weak Chebysheuv, then there exists a g in G with at least n changes of
sign on (a, b).

Furthermore we need the following standard definition:

DEFINITION 1.5. A zero x, of f in C[a, b] is said to be an isolated zero if there is a
neighborhood of x, such that f(x) # 0 on U\{xo}.

A zero xo of f in C[a, b]is said to be a double zero if x, is an isolated zero on (a, b)
and f does not change sign at xo.

A zero xo of fin C[a, b]is said to be a simple zero if xois not a double zero of f or if
Xo=a or xo=b.

Two zeros x1, x, of f in C[a, b] are said to be separated if there is a xo, x1 <xo < X2,
with f(xo) # 0.

Let Z (f) be the set of all distinct zeros of f and Z,(f) the set of all double zeros of f.
Furthermore, let bd Z(f) be the set of the boundary points of Z(f).

We denote by | Z (f)| and | Z*(f)| the number of the distinct zeros of f or the number
of the zeros of f counting simple zeros as one zero and double zeros as two zeros,
respectively.

In [15] we have shown that weak Chebyshev spaces, under appropriate hypo-
theses, can be decomposed in Chebyshev spaces by a finite set of knots. For this we need
the following definition:

DEFINITION 1.6. A zero x, of f in C[a, b] is said to be a nonvanishing zero with
respect to G if there is a g in G with g(xo) # 0.

In the following the term “with respect to G’ will be omitted.

We have proved in [15]:

THEOREM 1.7. Let G be in W, and each x in [a, b] be a nonvanishing zero. Let at
least one nonzero g be in G having zero intervals. Assume also that there exists a § >0
such thatif gin Gand g=0 on [c,d]<[a, b] where ¢, d €{x €[a, b]|g(x) # 0} U{a, b},
thend — ¢ Z 5. Then there exists a minimal set of knots a = xo<x1<- - - <x, = bsuch that
the spaces G' = G||y,_, x,) are Chebyshev with dimension n; fori=1,- -, s.

We define:

¥V, ={G € W, |G fulfills the hypotheses of Theorem 1.7}.

By Theorem 1.7 ¥, contains exactly those spaces G in %, which we can decompose by
finitely many knots in Chebyshev spaces. In § 3 we will give a characterization of those
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elements of 7, which admit continuous selections. In order to establish this charac-
terization we have to define the following: Let Gbein ¥, anda =xo<x;<:: - <x;=b
be knots for G according to Theorem 1.7. Then we define for any ,j€{0,1, - - -, s},
i<j:

Gi={geG|g=0on [x;, x;I}, dim G;; = m;;.

In general the spaces G; are not weak Chebyshev. But we now define two subclasses of
¥, for which all G; are weak Chebyshev:

¥, ={Ge ¥, ||bd Z(g)|=m, for each g € G; and each G;}
77,, ={G e ¥, | No nonzero g € G has two separated zero intervals}
Furthermore we define for any G in ¥, and any k,[€{0,1, -, s}, k<I:
G* =Gliry, dim G* =ny
and for any subinterval [x;, x;]1< [xx, x/]:
Gi = Giltwxa, dim G =mj.
In [15] we have proved that G*' is weak Chebyshev for any k, /{0, 1, - -, s}.

2. Properties of 1;/ » and ‘;' n In order to construct a continuous selection for G
provided that G is in ¥, we need some properties of 7.

In [15] we have shown that any G in ¥, isa uniqueness space for approximation in
the L;-norm. For this we have proved a fundamental lemma which is also very
important for our characterization of the existence of continuous selections:

LEMMA 2.1. Let G be in ¥,. Then foranyi,j€{0, 1, - -, s}, i <j, the following are
true:

@) Gij is weak Chebyshev with dimension m;;.
(ii) For any function g, in G_i,-l[xi,b] thereis a 1 in G such that §, = g1 on [x;, b] and
§:1=0on [a, x;]. _

(iii) For any function g, in Gijlia, there is a g in G such that §, = g, on [a, x;] and
g~250 on [x,~, b]. x

Next we show an interpolation property for any G in 7, which we need for a
characterization theorem for best approximations from G. For the proof of this
interpolation theorem we first need a lemma on the number of separated zeros of
functions in weak Chebyshev spaces.

LEMMA 2.2. (Stockenberg [17]). Let G be in W',. Then the following assertions hold:

(i) If there is a g in G with n separated, nonvanishing zeros x, <x, <: -+ <Xp, then
g(x)=0 for all x with x =x, or x = xp..

(ii) No gin G has more than n separated, nonvanishing zeros.

LEMMA2.3. LetGbein V,. Letnpointsa =y, <y, <- - - <y, =b be given satisfying

Yn——n;s<xi<)’no.<+1, i=1,'..,s—1,

(for n—nis =0 and no;+1=n+1 the first or the second inequality is omitted, respec-
tively). Then for any n real numbers {z;}-1 there exists exactly one go in G with go(y;) = z;
fori=1,---,n.

Proof. We first remember that n; =dim G” = dim Gl[x,,,x,.]. Let any function goe G
with go(y;)=0for i=1,- - -, n. Then the lemma is proved if we can show that go=0.

We now assume that go 3% 0 and distinguish two cases: First: Let go have no zero
intervals. Then from Lemma 2.2 it follows that g, has exactly n distinct zeros on [a, b]
such that y; = a and y, = b. Since there is at least one nonzero element g € G having



CONTINUOUS SELECTIONS FOR THE METRIC PROJECTION 27

zero intervals, by Lemma 2.1 there exists a nonzero function g € G with exactly one
zero interval [a, x;] or [x; b], respectively. Therefore dim Go; = mo; =1 or dim G, =
m;s = 1, respectively.

Withgut loss of generality let mo; = 1. Since Gy, is weak Chebyshev by Lemma 2.1
and G e ‘V,., by Lemma 1.4 thereisa g€ G such that g has exactly one maximal zero
interval [a, x;] with x; = x; and g has exactly m; — 1 changes of sign on (x;, b). Because of
|bd Z(g)| = mo; the function g has exactly m; zeros on [x;, b] where mo; — 1 zeros are
zeros with changes of sign. In particular g(b) # 0, since g(x;) =0.

Let r; be the number of the common zeros of go and g on [a, b). We classify the
other n —r;—1 distinct zeros of go on (x;, b) as follows:

Let r, be the number of the double zeros having the property that for each of these
zeros there exists a neighborhood U such that go- g=0 on U.

Let 73 be the number of the double zeros having the property that for each of these
zeros there exists a neighborhood U such that go- g§=0on U.

Let r4 be the number of changes of sign.

Then n=r;+r,+rs+rys+1 and for sufficiently small ¢ >0 either the function
go— cg or the function g, + cg has at least n nonvanishing separated zeros on [a, b). But
by Lemma 2.2 this is not possible.

Second: Let [x; x;] be the maximal zero interval of go (i <j). Therefore, the
function go has no zero interval in [a, x;]U[x; b]. Without loss of generality we
may assume that x; < b. By hypothesis, the function g, has at least n —no; separated
zeros on (x; b] and because of go(x;) =0 even n —no;+1 separated zeros on [x;, b].
Smce go€ G,,, we get dim G,, =1. Since go=0on[x), b] it follows from Lemma 2.1 that

oj =dim Go, =1. From the definition of G% and Go, it follows immediately that
n = Roj + Mmyj.

Since goe Gy, by Lemma 2.1 there exists a § € Go; such that § =go on [x; b].
Therefore |bd Z(g)|= n — noj+ 1 = mo; + 1. But this is a contradiction of the hypothesis
that |bd Z (g)| = my; for all g € G;.

Furthermore we need a lemma dealing with the spaces G,, We show that for any
k,lg {0, 1, - - -, s}, k <, these spaces also satisfy the conditions made for the elements
of °V

LEMMA 2.4. Let G be in ‘V Then for any k,1€{0,1,---,s}, k<l, and any
subinterval [x;, x;] of [xx, xi] the following is true:

lbd Z(g)|l=m foreach gin G¥.

Proof. At first we treat the case that [x,, x;] is a boundary interval of [a, b].

First: a =xo<x;<b (the case a <x; <x,=b follows analogously). We assume
that there is a subinterval [x;, x;]<[a, x;] and a function g, € G;; such that |bd Z(go)| =
m$ +1 on [a, x/]. Smce |bd Z(go)| = m;; on [a, b], we get m,,>mg' Therefore, there
exist exactly m;; —m;; lmearly independent functions g1, g2, * * * gm;-mgin G vanishing
identically on [a, x;]. Then we get Gor=(81,82 """ gmu_mg!), since Gy, < G;;. Hence
Moi = my—my.

We now show that go, g1, - * * , 8m,, are linearly independent of [x;, b]. If there is a
g € Gy, such that § = go on [x;, b], then go=0 on [x; x;], since otherwise go— £ has two
separated zero interyals [xi x;] and [x, b] This would be a contradiction of the
hypothesis that G e ¥, Then Ibd Z(go)|=m$ +10n[a, x;]. By Lemma 1.4 there exists
a g € G, with exactly mq, — 1 changes of sign on (x;, b). Hence [bd Z(g)| = mo; on[x,, b].

Then for sufficiently small ¢ > 0 the function g — cgo has exactly m?,-' + 1 separated
zeros on [a, x;) and at least my, separated zeros on [x;, b]. But this is a contradiction,
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because g —cgoe G;;. Thus we have proved that go, g1, * * , 8m,, are linearly indepen-
dent on [x;, b]. Then by Lemma 1.4 there exists a function

mo;

g=aogo+ Y ag:
i=1

with at least mq, changes of sign on (x;, ). Since by Lemma 2.1 G, is weak Chebyshev
with dimension mo, we get ao# 0. Then |bd Z(g)|=m{ +1 on [a, x;] and [bd Z(8)| =
mo; on (x;, b). Therefore |bd Z(§)| = m;; + 1. Because of § € G;; we get a contradiction
again.

Second: a < x; < x;<b. At first we consider again the boundary interval [a, x;] <
[a, b]. By the first case it follows:

|bd Z(g)|=m} for each ge G

where [x;, x;] is an arbitrary subinterval of [a, x;]. From a remark in § 1 it follows that
G°' is weak Chebyshev with dimension no. Therefore, the space G° = C[a, x,] satisfies
the same hypotheses as the space G € ¥, if we replace [a, b]by[a, x;] and the dimension
n by no. Since [x;, x;] is a boundary interval of [a, x;], we may conclude as in the first
case and get the desired statement.

Now we are able to show that all g in P(f) coincide on a knot interval for any f in
Cla, bl. .

LEMMA 2.5. Let G be in V.. Then there exists an interval [x;, x;] such that g = g on
[xi, x;] for all g, § in Ps(f). Furthermore, for each g in Ps(f) the error f — g has at least
ni;+ 1 alternating extreme points on [x;, x;].

Proof. Let fe Cla, b]. By Theorem 1.3 there exists at least one AE goe Ps(f).
Without loss of generality let go=0.

If there is an interval [x; x;+1] such that f—0 has at least n;,;+1 alternating
extreme points on [x; x;+1], then by the well-known characterization theorem of
Chebyshev spaces all g € Ps(f) coincide on [x;, x;+1], since G'*" is Chebyshev.

But if there does not exist such an interval, there will exist an interval [x;, x;] such
that f — 0 has n;; + 1 alternating extreme points x; = t; <t, <- + - <t,, 41 = x;, but f— 0 has
no ny + 1 alternating extreme points on any subinterval [x, x;]< [x;, x;]. Then

tnl.i+1_n’.<xp<t,,i+1, p=i+1’..."_1
b v ]

(for n;, = n;; the second inequality is omitted).

Now let an arbitrary ge Ps(f) be given. Then because of ||f||=e(—1)f(t,)=
e—1)°(f-9)@), p=1,--,n;+1, e=+x1, we get e(—1)°g(t,)=0 for p=
1, -+, n;+1. Therefore, the function g has at least one zero on each interval [#,, t,+1],
but in general not n; distinct zeros on [#1, t,,+1], since it is possible that the zeros on
[t,-1, ;] and [, #,+1] coincide at #,. But we show that in this case the function g has an
isolated double zero at ¢,.

We now choose exactly one zero of g on each interval [, t,«1]forp=1, - -, n; as
follows:

If g has a zero on [#4, £,), then we define z; to be an arbitrary zero on [#, t,). If g has
no zero on [#y, t2), then g(f;) = 0 and we define z, = t,. Let now p — 1 zeros z, € [¢,, t,+1),
r=1,-+-,p—1, of g be defined. We define a zero z, €[#,, t,+1) as follows:

If g has a zero on (¢, £,+1), then we define z, to be an arbitrary zero on (¢, t,+1). If g
has no zero on (¢,, #,+1), then g(#,) =0 or g(¢,1) = 0. We distinguish:

(i) If g(¢,) = g(t,+1) =0 and z,_; <t,, then we define z, =1¢,. If g(¢,) = g(¢,+1) =0
and z,-1=1¢, and g has a double zero at ¢, then we define z,=1¢, If
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g(t,) = g(t,+1) =0 and z,_; =1, and g has a change of sign at #,, then we define
Zp =1tp+1.
(i) If g(z,+1) #0, then g(¢#,) = 0 and we define z, = t,.
(iii) If g(z,) #0, then g(#,.+1) =0 and we define z, = #,,1.
Thus we have defined n;; zeros where at most two of these zeros coincide. We next show
that from z,_; = z, forsome p e {2, - - -, n;} it follows that g has a double isolated zero
at z,1=z,: Let z,_, =z, for some pe{2, - - -, n;}. Because z,-1€[t,—1,%,] and z, €
[¢,, t,+1] we get z,_1=2z,=t, and g(z,) = 0. Moreover, g has no zero on (,-1, t,) U
(2,5 t,+1). If also g(#,+1) = 0, then by selection of z, g has a double zero at z, and we are
ready.
Therefore, there remains only the case that g(z,.1) # 0. Then &(—1)"""g(t,.1) > 0.
We distinguish:
(i) If g(z,—-1)#0, then ¢ (—l)p—lg(t,,_l) >0 and thus we get that ¢, is a double zero
of g.
(ii) If g(¢,—1) =0, then by selection of z,_; g has a change of sign at #,—; and,
moreover, z,-»=t,—1. If also g(t,—2) = g(t,—3) =- - - = g(#1) =0, then we would get by
definition:

z1=1, 2=,y Zp-1 T 1 < Hp.

But because of z,_; =z, =1, this case is not possible. Therefore, there is a #; with
g(t)#0. Let t,_, be the greatest point less than f,_; such that g(¢,_) #0. Then
g(ty—s+1) ="+ = g(t,—1) = g(t,) = 0. Then g has zeros with changes of signat , 41, - - -,
t,-1andbecause z,_» =t,-1, Z,—3 =lp_2, * * * , Zp—s = l,—s+1 NO further zeroon [#,_,, #,] by
definition. Because ¢(—1)"""g(z,—s) >0 we get e(— 1)*'g(x)>0 for all x € (z,_1, t,).
Then because e (—1)"*'g(x)>0forall x (25, t,+1) the function g has a double zero at #,.

Thus we have shown that if z,_; = z, =, for some p€{2, - - -, n;}, g has a double
zero at t,. Because t,, 4 1-n,, <X, <ty +1forp=i+1,---,j—1,and because z, € [t,, t,+1]
forp=1,---,n; we get:

Zny; <xp<‘z’llp+1’ p=i+1’.”’j-—1'

—Npj
If all z, are distinct, then by applying Lemma 2.3 and Lemma 2.4 to the space G" we
conclude that g=0 on [x; x;] and we are ready.

But if only r < n;; of the zeros {z,}," are distinct, then the function g has s = n; —r
isolated double zeros z,, = zp,+1, Zp, = Zp,+1, * * * » Zp, = Zp+1.- We denote the r distinct
points from {z,},%, by v1, - - -, v,, arranged ascendingly. We choose ¢ >0 such that

() zpjn, T & <xp<Zn,+1—¢, p=i+1,---,j—1,

. 1 .
(ii) e<3 min (Vp+r1—1p), Vo =Xy Vrr1=X),
Jun |

is satisfied. In case v1=ux; or v,=x; or v1=x; and v, =x; we only determine the
minimum forp=1,---,rorforp=0,---,r—1lorforp=1,---,r—1, respectively.

We now add to each double zero z,,, z,,, * * * , z,, one further point z,, +¢, z,,+
€+ +,z, +eandgetanewset{vy, -, v, z,+¢&, -, 2, +¢&}consisting of n; points.
We denote the elements of this set by 0y, 02, - -+, U, arranged ascendingly. Then we
get:

ﬁn”—npi<xp<ﬁn.»,,+la p=i+1"'.a]’_1'

Let U(z,,) be a sufficiently small neighborhood of z,, on which the function g has only
the zero z,, (remember that z, is an isolated double zero of g). Then by applying
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Lemma 2.3 and Lemma 2.4 to the space G there exists exactly one g € G" such that
@) g(zp,+e)=0,k=1,---,s;

(i) &(z,)=0, p&{p1,P1+1,p2, p2+1,- -+ ,ps, ps+1};

(i) &(zp,)=sgng(x), xe U(zp)\zp}, k=1, -,s
Then the functions g and g have at least n;; — 2s common zeros and for sufficiently small
¢ >0 the function g—cg has at least two distinct zeros on [z,, —¢, z,, +¢] for k=
1,---,s Thus g —cg has at least n;; distinct zeros, denoted by wj, - - -, w,,, arranged
ascendingly. Then because of the choice of ¢ we get:

Why—ny < Xp < Wny+1, p=i+1,---,j—1.
This is true, since w, = z, for p&{p1, p1+1, p2, p2+1, - -, ps, ps + 1} and {w,,, wp+1} <
[zp, — & zp, H€]=[2p 41— 6, Zpsate]for k=1, ---,s.
Now we may apply Lemma 2.3 and Lemma 2.4 to G” and we get that g —cg =0o0n
[x;, x;]. But this is a contradiction, since (g —cg)(z,, ) #0fork=1,---,s.

Thus we have proved that all of the zeros {z,},%, are distinct and we get that g=0
on [x; x;] as shown above. Since ge Ps(f) has been chosen arbitrarily, all best
approximations of f from G vanish identically on [x;, x;]. Therefore, f—g has n;;+1
alternating extreme points on [x;, x;] for any g € Ps(f).

By applying Lemma 2.5 we now are able to prove a characterization theorem for a
best approximation from G, in cage G is in ‘V

THEOREM 2.6. Let G be in °V A function g in G is a best approximation for f in
Cla, b] from G if and only if there exists a knot interval [x;, x;] such that f — g has at least
ni;+ 1 alternating extreme points on [x;, x;].

Proof. Let fe Cla, b] and ge Pg(f). Then by Lemma 2.5 there exists a knot
interval [x;, x;] such that f — g has at least n;+ 1 alternating extreme points on [x; x;].

Conversely let fe C[a, b]and g € G and [x;, x;]<[a, b] be a knot interval such that
f—g has at least n; + 1 alternating extreme points on [x;, x;]i.e. there exist n;; + 1 points
X =1 <t<- - <t,41=x; such that e(=1)"(f—g)(&,)=|f—gl for p=1,-- -, n;+1,
e==x1. If gé&Ps(f), then there exists a g€ G such that e(—1)°(f—g)(t)<
e(-1)°(f—g),) forp=1,- -+, n;+1 and, therefore,

e(=1)°(§ —g)(%)>0.

Hence g — g has n;; changes of sign on (x;, x;). Since G” is weak Chebyshev by Theorem
1.4 in [15], this is a contradiction.

3. The characterization theorem. Now we are able to give a characterization of the
existence of continuous selections for all G in ¥,. We will prove the following
statement:

THEOREM3.1. Let G be in V. Then there exists a continuous selection for G if and
only if Gisin ‘V

At first we will show the nonexistence of a continuous selection for G, in case G is
in ¥, but not in ¥,. For proving this we need the following fundamental lemma
established by Lazar, Morris and Wulbert [7].

LEMMA 3.2. If s is a continuous selection of Cla, b] into G and fis in C[a, b],||f| =1
and 0 is in Pg(f), then there is a go in Pg(f) such that

(i) forevery x in bd Z(Ps(f)) Nf (1) and every g in Ps(f) there is a neighborhood
U of x for which go=g on U and

(ii) for every x in bd Z(Ps(f))Nf~ Y(-1) and every g in Ps(f) there is a neighbor-
hood V of x for which go=gon V.

Here Z(Ps(f)) ={x €[a, b]|g(x) =0 for all g € Ps(f)}.
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We will now show by two lemmas that in case G is in ¥}, but not in ‘77,, there does
not exist any continuous selection for G. This proves the one part of Theorem 3.1.

LEMMA 3.3. Let G be in V.. Let no g in G have two separated zero intervals. If there
existsomei, j€{0,1,- - -, s} and a function go in G; with |bd Z(go)| > m, then there does
not exist any continuous selection for G.

Proof. Since by Lemma 2.2 no g € G has more than n separated, nonvanishing
zeros and all x € [a, b] are nonvanishing, there exists an integer p such that |bd Z(g)|=p
for all ge G. Now let G; be such a subspace of G having an element g, with
|bd Z (go)| = m > m;;. Without loss of generality we may assume that

m=|bd Z(go)|=|bd Z(g)| for all ge G

This is possible because |bd Z(g)| = p for all g € G;;. Furthermore we set ||gof| = 1.

Let I =[x, x;]2[x; x;] be the maximal zero interval of go. We now only treat the
case a < x; < x;<b, since the cases a = x; and x; = b follow analogously. Furthermore,
we only treat the case that x, is in the closure of {x €[a, b]|go(x) <0} and x; is in the
closure of {x €[a, b]|go(x) > 0}. That means that go(x) <0 on [x; — 8, x;) and go(x)>0
on (x;, x; + 8]for 6 > 0 sufficiently small. By hypothesis, the function go has only the zero
interval I and, therefore, exactly m —2 distinct zeros

A=20=21<22<+ <2, <X <1 <2, 1<** < Zp2=Zp-1=b

on [a, P\
We define m points {t,} 70 by

t,=(2,+2p+1)/2, forp=0,---,r—1,
t,=(z,+x)/2,
tr+1 = (xl +zr+1)/2’

t,=(zp-1+2,)/2, forp=r+2,---,m—1.
We choose & >0 such that

{z1,22, "+, Zm=2, X1, X1} N [t, — &, t, +e]= forp=1,--+,m—-2,

We now construct a function f € C[a, b] as follows:

(a) Let fhave n,.1+1 alternating extreme points on (x,, x,+1) forp=k,---,[1—1
with |f|=1 on these points.

(b) f(xx)=1and f(x)=1 for all x € [x;, t,+1).

(¢) If z:>a, then we set f(x)=sgn go(to) for all x €[a, to]. If z; = a, then we set
f(a) = —sgn go(t1) and f(x) =sgn go(t;) for all x €[t;—¢, t; +€].

(d) If z,,—» < b, then we set f(x) =sgn go(tn,—1) for all x €[t,,—1, b]. If z,,_> = b, then
we set f(b) = —sgn go(tm-2).

(e) Ifforsomepe{l,--,m—2} z, is a zero with a change of sign on (a, b), then
we set

sgn go(t,) for all x €[z, ¢,] ifp=r,
fx)= { :
sgn go(tp+1) for all x €[z, t+1] f p=r+1.
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If for some pe{l,- -+, m—2} z, is a double zero on (a, b), then we set

_ [—sgn go(tp) ifp=r,
f(z) {—sgn golty+1) ifp=r+1,

f(x)_{sgn go(ty) for all xe[t,—e,t,+¢] ifp=r,
sgn go(t,+1) forall xelt,s1—&, tpr1+e] ifp=r+1.

(f) max{—1+go(x), —1}=f(x) =min {1 +go(x), 1) for all x €[a, b].
Because of (a) every g € Ps(f) vanishes identically on [x,, x;]. From ||f||=1 on [a, b] it
follows immediately that 0 € Ps(f) and, because of | f — gol| = 1, go € Ps(f), too. There-
fOI'C, Xk, X1 € bd Z(PG(f))

At first we show that Z,(go) = Z (Ps(f)), in case Z,(go) # . We assume that there
is a function g € Ps(f) and an % € Z,(go) such that g(x) # 0.

Since g € Ps(f), it follows from the definition of f:

g-8%=0 on[t,—¢t,]forp=0,---,m—1 ifa<zi, zm-2<b,

g-8=0 on[t,—¢t,]forp=1,---,m—1 and
g(a)=0 or sgng(a)=—sgngo(t1) ifa=z1,zm0<b,

(*) £-8=0 on[t,—¢t,Jforp=0,---,m—2 and
g(b)=0 or sgng(b)=—sgn go(tm—2) fa<ziy,zn2=0,

g:8=0 on[t,—¢t]forp=1,---,m—2 and

g(a)=0 or sgng(a)=—sgngo(t;) and
gb)=0 or sgng(b)=—sgn go(tm-2) ifa=zi, zmo=>b.

Now we consider for sufficiently small ¢ >0 the function
g=8go+cg.

Then g =0 on [x, x;] and it follows immediately from (*) that g has at least as many
changes of sign on (a, x) and on (x;, b) as the function go. Additionally the points x, and
x; are boundary points of Z(g) and, if go(a) =0 or go(b) =0, Z(g) has further boundary
points on neighborhoods of a or b.

Since ¥ € Z,(go), there existsa p €{1, - - - , m —2} such that £ = z,. Without loss of
generality let z,>x, Then t,<z,<t,+; and because of §-go=0 on [f,—¢,,]U
[t,+1—&, t,+1] and sgn g(z,) = —sgn go(#,+1) the function g has two changes of sign on a
neighborhood of z,. But this is also true for all double zeros of g, which are no zeros of g.
In this way we get

[bd Z(8)|>[bd Z(go)| = m.

But this is a contradiction, because g € G;; and |bd Z(g)|=m for all g€ G;. Thus we
have shown that Z;(go) = Z(Ps(f)). Since Z,(go) =bd Z(go), we even get Z,(go) <
bd Z(Ps(AN(F MU (=1)).

Now we distinguish the following cases: First: Z,(go) # . Without loss of
generality we may assume that there is an £ € Z;(go) such that £ >x; and f(£)=1. We
now apply Lemma 3.2: If there exists a continuous selection, then there exists a
g1 € Pg(f) such that

(i) for x; and go there is a neighborhood U of x,; for which g1 =ge on U and
(ii) for X and O there is a neighborhood V of X for which g;=0 on V.



CONTINUOUS SELECTIONS FOR THE METRIC PROJECTION 33

Since g1 = go >0 on (x;, x; + &) for a sufficiently small § > 0, by hypothesis, g; has no
zero interval in [x, b]. Therefore, £ is an isolated zero of g; and because of (ii)
X € Z4(g1). Then it is easy to verify that for all sufficiently great positive numbers d the
function go+ dg; satisfies

|bd Z (go+ dg1)| = |bd Z(go)|.

Since % € Z,(go) and X > x;, thereisape{r+1, - - -, m—2} with X = z,. Then it follows
from the definition of f that g; =0on [z, —¢, t,]and on [t,+1 ¢, #,+1]. Since go+ dg; has
no zero interval in [x;, b] for any d > 0, the function g+ dg; has for some d > 0 at least
two changes of sign on (¢, #,+1) and, therefore, we get

Ibd Z (go+dg1)| 22 +[bd Z (go)!.

But this is a contradiction, because go+dg;€ G—ij. Thus there does not exist any
continuous selection in this case.

Second: Z4(go) = & and {a, b}N Z(go) = J. Then g, has exactly m —2 zeros with
changes of sign on (a, b)\I and, by hypothesis, one further change of sign on (x; — 8, x; +
) for sufficiently small § > 0. Therefore, go has exactly m — 1 changes of sign on (a, b).
Since dim G;; = m;;, there exist n —m,; functions in G linearly independent on [x;, x;]
and by Lemma 1.4, therefore, a function 4 € G with at least n —m;; — 1 changes of sign
on (x; x;).

We now distinguish: If n — m; — 1 is an odd number, then for sufficiently small ¢ >0
either the function go + ch or the function go— ch has at least n — m;; — 1 changes of sign
on (x;, x;) and further m changes of sign on (a, b) (at least one on a neighborhood of x;
and another one on a neighborhood of x;) and, therefore, at least n —m;—1+m =
n—m;—14+m;+1=n changes of sign on (a, ). But this is a contradiction of the
hypothesis that G is weak Chebyshev.

Therefore, there remains only the case that n —m;; — 1 is an even number. In this
case we first apply Lemma 3.2 again: If there exists a continuous selection, then there
exists a g; € Ps(f) such that

(i) for x, and O there is a neighborhood U of x, for which g;=0 on U and

(ii) for x; and go there is a neighborhood V of x; for which g; = go on V.

Since g1 = go>0 on (x,, x; + 8], by hypothesis, g; has no zero interval in [x,, b]. Let
[xn, x;] be the maximal zero interval of g;. We denote all distinct zeros of g; on
[a, b\[xn, x:1bY a = yo=y1< - <Y = X0 <X = Yus1 <Yus2 <+ <y,-1 =y, = b. We
define:

d=z _min gy,

where [yo, y1] or [y,—1, y.]or [yo, y1]and [y.—1, y,] are omitted, if y1=a0rys1= b or
yi=a and y,_;= b, respectively. Then d >0. We set d =min (3, d) and define the

function g, by g, = g1 — dgo (remember that ||go|| = 1). Then from the definition of f it
follows that

g1°8=0 on[z,t]forp=0,---,r, and
on[z, t,yi]forp=r+1,---, m-2 and
on [xl, tr+1]‘

Therefore, Z(g,) has at least one boundary point on each interval (z,, z,+1] for
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p=0,---,r—1andon (x; z,+1]and on (zp, z,+1)forp=r+1,- - -, m —3. These are at
least m — 2 points. Moreover, we get two further boundary points on neighborhoods of
%, and x;. Therefore, |bd Z(g,)|=|bd Z(go)| and from |bd Z(g,)| = m it finally follows
that |bd Z(g.)|=m

We now distinguish once more: If Z,(g,) # (J, then we conclude as in the first case
by replacing go by g» and get in this way that there does not exist any continuous
selection for G. If Z,(g,) = &, then g, has exactly m —2 changes of sign on (a, b)\I.
Since g; =0 on the neighborhood U of x;, we get g, >0 on [x, —§, x,) for sufficiently
small § > 0. Since g; > dgo on (x;, x; + £ ] for sufficiently small £ >0, we also get g >0 on
(x5, x;+ €]. By hypothesis, # —m;; — 1 is an even number. But if we replace go by g», then
we may conclude in the same way as in the case that n —m; —1 is an odd number.
Therefore, for sufficiently small ¢ >0 either the function g>— ch or the function g, +ch
has atleast n —m;;—1+m—2+2=n—m;—~1+m; +1=n changes of sign on (a, b) (at
least one on a neighborhood of x;, and another one on a neighborhood of x;). But thisis a
contradiction of the hypothesis that G is weak Chebyshev.

Third: Z4(go) = & and a € Z(go), b& Z(go) or a& Z(go), b € Z(go). Without loss of
generality we may assume that a ¢ Z(go), b € Z(go). We distinguish two cases:

(i) g(b)=0 for all g€ Ps(f). Then b ebd Z(Ps(H))N(f ' (1)Uf ' (=1)). Without
loss of generality let f(b) = 1. Then go = 0 on a neighborhood of b by hypothesis. If there
is a continuous selection, then by Lemma 3.2 there exists a function g, € Pg(f) and a
neighborhood U of b for which g:=0 on U and a neighborhood V of x; for which
g1 = goon V. Therefore, g, has no zero interval in [x;, b]. Then it is easy to verify that for
sufficiently great d > 0 the set Z(go+ dg:) has at least m + 1 boundary points. But this is
a contradiction, because go+ dg; € G;; and, therefore, |bd Z (g + dg1)| = m.

(ii) There exists a § € Pg(f) with g(b) # 0. Then for some constant ¢ >0 the set
Z(go+cg) has at least m boundary points and {a, b} Z(go+cg)= . Then we
conclude as in the first or the second case by replacing go by go+cg.

Fourth: Z,(go) = and {a, b} <= Z(go). If g(b) =0 for all g Ps(f), then we can
conclude as in the third case.

Otherwise, there is a § € Pg(f) with g(b) # 0. Then for some constant ¢ >0 the
function go+ cg satisfies |bd Z(go+ cg)|=m and bg Z(go+ cg). Then we may conclude
as in the first three cases by replacing go by go+cg.

LEMMA 3.4. Let G be in V,,. Let § be a function in G having two separated zero
intervals. Then there does not exist any continuous selection for G.

Proof. Let § € G having two separated knot intervals [x;—;, x;] and [x), x;+1] with
i <j. Without loss of generality we may assume that there does not exist any g € G such
that g=0 on [x;-1, x;]U[x, xj+1], %0 on [x; x;] and g has a zero interval in [x;, x;].
Such a choice of the knots x;, x; is always possible. Then in particular £ has no zero
interval in [x;, x;]: We define: G=G,._ LN G, j+1. Then dim G =1, since ge G and it
follows immediately that no g € G, g#0 on [x;, x;], has a zero interval in [x;, x;]. Since
G <= G and G is weak Chebyshev, there exists a nonnegative number r=n—1 and a
function go e G such that go has exactly r changes of sign x; <z; <z, <---<z,<x;and,
furthermore, noge G has more than r changes of sign on (x;, x;). We may assume that

=0 on a neighborhood of x; and ||g0||< 1. Then we choose r distinct points {v,},-1
satlsfymg X <Z1<01< 2 <0, < <2, <0, < x, and we choose &>0 such that
{z1, 22, zn %} N[V, — e,vp+s] ,p=1,---,r,and x; +& <z;.

We now construct a function fe€ Cl[a, b] as follows:

(@) f(x)=go(x) for all x €[a, x;-1]U[x;+1, b].

(b) Let f have n; + 1 alternating extreme points on (x;_i, x;) and n;..; + 1 alternating

extreme points on (), x;+1) with |f| =1 on these points.
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(¢©) f(x)=1forall xe[x;, x;+¢]
f(x)=(-1)° forall xe[v,—¢,v,+e]forp=1,---,r
fO) ==\

(d) max {—1+ go(x), —1}=f(x) =min {1+ go(x), 1} for all x € [x;-1, Xj+1]-

Then || f—O0l|=|| f — goll= 1. Since f — 0 has n; + 1 alternating extreme points on [x;_1, x:]
and G 'is Chebyshev with dimension n,, it follows from the well-known alternation
theorem for the Chebyshev spaces, that all g € Ps(f) vanish identically on [x;_1, x;].
Therefore, 0 € Ps(f) and go € Ps(f), too. Now let g € Ps(f), g=0on[x; x;]. Then g=0
on [xi_1, x;]U[x;, x;+1] and, therefore, g € G. By hypothesis, g has no zero interval in
[xi x;]. Then it follows from the definition of f that g has at least  changes of sign on
(xi x;) and by hypothesis, therefore, exactly r changes of sign on (x;, x;). Thus (—1)'g =0
on a neighborhood of x;.

Since go has no zero interval in [x;, x;], we get x;, x; € bd Z(Pg(f)). We now apply
Lemma 3.2: If there exists a continuous selection for G, then there exists a g € Pg(f)
such that for x; and go there is a neighborhood U of x; for which g = g, on U and for x;
and 0 € P (f) there is a neighborhood V of x; for which (=1)"*'g=0on V.

Since g = go on U, we get §# 0 and, therefore, g has no zero interval in [x;, x;]. As
shown above there is a neighborhood W of x; for which (—1)’g = 0 on W. Thus there is a
e WNV with (-1)'g(x)>0 and hence we get a contradiction to Lemma 3.2.
Therefore, there does not exigt any continuous selection for G.

If G isin ¥, but not in 7, then it follows from Lemma 3.3 and Lemma 3.4 that
there does not exist any continuous selection for G. Therefore, we have only to treat the
case that G is in ¥,,. In this case we are able to show the existence of a continuous
selection. For constructing such a selection we need the following two lemmas:

LEMMA 3.5. (Niirnberger and Sommer [9]). Let G be in W, and fbe in C|a, b]. If g1,
g2 in Pg(f) are two AE’s for f, then at least one of the following is true:

(i) g1— g2 has at least n +1 distinct zeros on [a, b];

(ii) g1— g2 has at least n+2 zeros on [a, b] counting multiplicities.

LEMMA 3.6. Let Gbein ¥,. Then foranyje{0,1, - - -, s}and any gin Go;jwithg#0
on [x;, xj+1] the following is true:

|Z*(g)|=mo; +1.

Proof. We assume that thereisaj€{0,1, -+, s}andagoe Goj, go#= 0 on [x), Xj41),
satisfying | Z*(go)| = mo; + 2. Since G € ¥, and go=0o0n [a, x;], go has no zero interval in
[x;, b]. Therefore, we may assume that go has exactly p distinct zeros on [x;, b] and
go(b) =0. The case go(b) # 0 follows analogously. Let & =max {x € [x;, b)|go(x) = 0}.
Let x; <y;<y><---<y,<b be all the zeros with changes of sign and x; <z;<z,<

.- < z,< b be all double zeros of go. Therefore, p =r+t+2 and because of | Z*(go)| =
m0j+2 we get r+2t+2§mo,~+2.

We choose mg; —r—1 points

max (%, Xs-1) <yr41 <"+ * < Ypom1 < b.

Since Gy, is weak Chebyshev by Lemma 2.1, there is by Theorem 1.3 a nonzero g € G;
such that

(-1)'g(x) =0, Yi-1<x <y, i=1,:-,my;
Yo = a, Yimo; = b-

Without loss of generalitylet g - go=0on[a, y,+1]. Since G € ‘77,,, g has no two separated
zero intervals. Therefore, g0 on [x,-1, b], because §=0 on [a, x, ] with x, = x;.
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We distinguish: First: g(z;) #0fori=1, - - -, t Then for sufficiently small ¢ > 0 the
function go—cg has no zero interval in [x;, ] and at least 1+ r+2¢=mo;+ 1 distinct
zeros on [x;, b]. Since go—cg e Go;, this is a contradiction of the hypothesis that
[bd Z(go—cg)| = mo;.

Second: Thereissome i€ {1, - - -, ¢t} such that g(z;,) = 0. Then for sufficiently small
¢ >0 the function g — cgo has no zero interval in [x;, b] and at least one zero at x;, r zeros
at yy, y2," '+, ¥», One zero on a neighborhood of y, for p=r+1, - - -, mo;—1 and one
zero at z;,. These are at least mo; + 1 distinct zeros on [x;, b] and, therefore, we get a
contradiction again.

Now we are able to construct a continuous selection for G, in case G is in ‘V For
this we need local AE’s. These are local best approximations of the following form:
If f is in C[a, b] and G is in %, and if we approximate f by G = G|c.q1 (dim G = m)
for any subinterval [c, d] of [a, b], then go in G is said to be a local AE for f if

£ —8gollteca1=|lf — glltc.a) for all g in G and if there are m + 1 points c S yo<y; <:--<
ym =d such that

8(_1)i(f_g0)()'i)=||f—30"[c,d] fori=0,:--,m, e==1.

In general go is not an AE for f from G and, therefore, go is not in Ps(f) in general.

The construction of a continuous selection for any G in 7, is based on the
construction of a continuous selection for splines established by Niirnberger and
Sommer [10]. But while in that paper the authors have been able to use well-known
results from spline theory, we now use some of those results about the elements of ¥,
which we have shown in § 2.

LEMMA 3.7. Let G be in V.. Then there exists a continuous selection for G.

Proof. Let fe Cla, b]and go € Ps(f) arbitrarily. Then by Lemma 2.5 there exists an
interval [x,, x,+1] such that g=go on [x,, x,+1] for all ge Pg(f). We construct a
continuous selection step by step:

(1) Local approximation.If dim Go,+1= 1, then we approximate f — goin [x,+1, b]
by Gop+1. Since Gy ,+1 is weak Chebyshev by Lemma 2.1, Theorem 1.3 guarantees the
existence of a local AE g; € Pg,,.,(f— go) for which

I1f — 80— &illtaxp11=If — golltaxpr 1 =11 — goll,
£ = g0~ gilltxp.r.e1 =1 f — 80— Ollixyn 1= f — goll.

Therefore go+ g1 € Po(f). If Gop+1=(0), then go = &o on [x,1, b] for all go, go€ P (f),
because otherwise by Lemma 2.1 there exists a nonzero g € Go,+1. In this case we
define the function g, by g; =0.

(i) Uniqueness of local AE’s on [x,+1, X,+2]. We will now show for approximation
in [x,,+1, b] that any two AE’s g1, §1€ Ps,,.,(f — 8o) are the same on [x,+1, X,+2], i.€.
81= g1 0n [X,.+1, Xp+2]. We assume to the contrary that g; # g; on [xp+1, X,+2). Since
g1=g: on [a, x,+1] and G € ¥,, the function g;— g; has no zero interval in [xp+1, 8]
Then by Lemma 3.6 we get |Z*(g;— 1)| = mop+1+1 0on [x,41, b] and, since G e 7,,
|Z (81— &1)| =mop+1 On [x,+1, b]. But because of Lemma 3.5 this is not possible and,
therefore, we get that g; = g; on [x,+1, X,+2].

(iii) We show: If goe Ps(f), §o# go, and g1€ Ps,,,,(f—8o) is a local AE for
approximation in [x,.1, b], then go+ g1 = §o+ £1 on [x,, x,+2]. Since go = goon [x,, x,+1],
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the function go— o€ G, ,+1. Then by Lemma 2.1 the function go, defined by

- {go-éo on [xp1, 6],

£=1o on [a, x,+1]
is an element of Gy, ,+1. The functions f —go— gy and f — go— 1= — go— (—go + go+81)
have mo+1+1 local alternating extreme points on [x,.1, b]. Since go€ Gy ,+1, the
function g; = §; — §o € Go ,+1 and this function is a local AE for f — go by approximation
in [x,+1, b]. Since according to (ii) all of these local AE’s coincide on [x,+1, X,+2], We
must have g, =g;~go+8§o on [x,+1, X,+2]. Because g1 =¢:=0 on [x,, x,+1] we get
finally

gotgi=go+&1 on[x, x,:2].

(iv) This method will be continued in [x,.2, »] in the following way: If
dim Gy ,+2 2 1, then we approximate f— go— g1 in [X,:2, b] by Go ,+> and by Theorem
1.3 we get a local AE g€ P, ,,,(f— 80— 81). As in (ii) we see that all of these AE’s
coincide on [x,+2, X,+3] and as in (iii) we see that go+ g1+ g2 = go+ £1+ &2 on [x,, X,+3]
for any choice of go, g0, 8o+81, £ot+&1. We also see that go+g1+g.€ Ps(f). If
Go.p+2 =(0), then we define g, by g,=0.

(v) We continue this method up to the last interval [x,—,, b] and get a function
g=go+81+ " +g-1-p € Ps(f) such that g =go+8&1+ -+ +£-1-p On [x,, b] for any
choice of 8o, g~0, g0+gl, g~0+g~1’ "g0+ +gs 2-ps g0+ +g~s 2—p*

(vi) Usmg the same kind of arguments as in (i) to (v) for the interval [a x,]we geta
functlong 8—pt+8—p+1t+- - +g_1+go€ Ps(f) where foreachze{l 2,-++,p}incase
dim G,,+1 is=1,g-;isalocal AEin Ps,,, , (f—8o—8-1— — g i+1) by approxima-
tion in [a, xp+1-:) and, in case G,i1-is =(0), g—; is deﬁned by 8-i =(. As before,
§=8§ ,+& pe1+ - +§_1+§o on [a, x,41] for any choice of go, So, g—1+goy S-1+
go," "5 8—p+1t  +go, §pr1t+ 5o

Now we define: s(f)=g-,+g—p+1+- - +g-1+go+g1+- " +g—1-p, Which is an
element of Pg(f).

The continuity of this selection follows exactly in the same way as in the case of the
spline functions established in [10]. Therefore, we will omit the proof of the continuity
of this selection.

Thus by applying of Lemma 3.3, Lemma 3.4 and Lemma 3.7, Theorem 3.1 is

completely proved and so we have given a complete characterization of the existence of
continuous selections for 7.

4. Examples. In this section we will define some important subclasses of ¥, and
will apply the results of § 3 to those classes.

At first we will show that the spline spaces and the generalized spline spaces in ¥,
have not the same behavior in general, even if we consider generalized spline spaces in
.. In order to show this we first define the spline spaces: Let m, keNwithm+k+1=
n.Let a =xo<x;<-:+<xg+1=b be apartition of [a, b]. Then the space Sm i of spline

functions of degree m with the k fixed knots x4, x», * - *, X is spanned by the functions
L,x, -, x™ (x=x1)¥, (x—x2)¥, - -+, (x —xx) 7. In [15] we have shown that S, , € V..

From results of Curry and Schoenberg [3] it follows that S, € ‘77,, if and only if
k =m +1. Therefore, Lemma 2.3, Lemma 2.5 and Theorem 2.6 are valid for all spline
spaces Sy, x With k =m + 1. But from results of Karlin [5, p. 503], Rice [11, p. 152] and
Schumaker [12] it follows that the statements of Lemma 2.3, Lemma 2.5 and Theorem
2.6 are also valid for k > m + 1 and, therefore, for any spline space S, .. But this is not
true for all elements of ¥, as we will show by the following example. Therefore, there
are elements of ¥, having not the same behavior as spline spaces.
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Example. We define four functions in C[—2, 2] by go(x) = x,
g1ix)=(x—1)s,  gax)=(-1-x)4,

0, xe[-2,—1],
ga(x)=$1-x% xe[-1,1],
0, x€[1,2],
where
x—t if x=¢,
("")+‘{0 if x<t.

Then G =(go, g1, &2, g3) < C[—2, 2] is weak Chebyshev with dimension 4 and can be
decomposed in Chebyshev spaces by the knots x; =—1, x,=0, x3=1. Hence Go =
(51, g3 Goz_= (81), Gos=(g1), G12=(g1, gg% G13=(g1, 82), G14=(82), G23=(g1, &2),
Gaa=(g2), Q= (g2, g3). Therefore, G € ¥,,. Since g3 has two separated zero intervals,
we get G£ V.. Since no1 =2, no2=3, noa=3,n12=2,n13=2, 114 =3, 123 =2, N4 =3,
nss =2, the points y; = -2, y,=—1, y3=1, y, = 2 satisfy the condition

y4_nl.4<x,~ < Ynoi+1 for i= 1, 2, 3.

Then Lemma 2.3 is not fulfilled, because gz(y;)=0for i=1, 2, 3,4 and g 0.
We now define a function f in C[-2, 2] by

-3-2x, xe[-2,-1],
fx)=<1-2x% xe[-1,1],
—-3+4+2x, x€e[1,2].

Then f has exactly five alternating extreme points —2, —1, 0, 1, 2 and, therefore, 0 is in
Ps(f). Then it is easy to verify that also g+ g»+ g3 is in Ps(f). But there is no knot
interval [x;, x;] on which f - (g1+ g>+ g3) has at least n;; + 1 alternating extreme points.
Thus Lemma 2.5 is not satisfied. But because of 0, g; + g2+ g3 in Pg(f) Theorem 2.6 is
also not satisfied, since g; + g2+ g3 has no zero interval in [-2, 2].

. Remark. As shown before all spline spaces S« satisfying k =m +1 are elements
of ¥,.. For this special class of spline spaces there follow from Lemma 2.3, Lemma 2.5
and Theorem 2.6 results of Karlin [5], Rice [11] and Schumaker [12] established for all
spline spaces.

Now we will apply Theorem 3.1 to the spaces S,..«. We have shown before that S,..
(m+k+1=n)isanelement of ¥, if and only if k = m + 1. Thus from Theorem 3.1 we
get immediately a characterization of those spline spaces which admit a continuous
selection.

THEOREM 4.1. Let S, « be a spline space. Then there exists a continuous selection for
Swrxinandanly ifk=m+1.

In this way we have obtained a result established by Niirnberger and Sommer [10].

Since the statements of § 2 are also valid for spline spaces having knots with
multiplicity less than or equal to m, Theorem 4.1 is also true in this case.

Finally we will derive from Theorem 3.1 a characterization of the existence of
continuous selections for another very important subclass of ¥, that is for the
continuously composed Chebyshev spaces (CC spaces). For defining this class let
a=x0<x;<---<x,=b be a partition of [a,b] and for i=1,---,s let G' be
Chebyshev spaces with dimension n;, n; =1, on [x;-1, x;]. Bartelt [1] has proved that
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each CC space G, defined by
G ={g€ C[a9 b] !g’[xl—lyxi]e Gi’ =1, S}

is weak Chebyshev with dimension Y;_, n; — (s — 1). Therefore, if ¥;_, n;— (s —1)=n,
G is an element of %, and, since each x €[q, b] is a nonvanishing zero, G is an element
of ¥, too.

It should be observed that the class of the CC spaces is a small subclass of ¥, since
by definition the elements of those spaces satisfy at the knots no stronger condition than
continuity in general. But for many elements of ¥, stronger conditions are valid at the
knots, e.g. any function of the spline space S,. ;-1 with the knots xi, x2, - -+, x,—; is
(m —1)-times continuously differentiable. We will make this clearer by the following
example.

Example. Let a =xo<x1<-:'<x,=b be a partition of [a, b]. Then the spline
space S, ;-1 with the knots x, - - -, x;_; is spanned by the functions 1, x, - - -, x™, (x —
x4 (x=x2)%, -+, (x—xs-1)¥ and, therefore, dim S,,,_;=m+1+s—1=m+s. As
said before S, ;1€ ¥, if n =m +s.

From the definition of S,,s—; it follows immediately that

S’"’S“l ={g€ Cm_l[a’ b] | gl[Xi—I,Xi]GPm’ i=1,---, S}

where P,, is the space of all polynomials of degree =m. Now we can see that S,,, _; is no
CCspace, because the CC space Gy belonging to the givenknots x4, - - -, x;—1 and to the
Chebyshev spaces G' =P, fori=1, - - -, s is defined by

Go={geCla, b)| gl s x1€EPm i=1,- -, s}

Hence dim Go=Y;_,(m+1)—(s—1)=sm+1>n=m+s=dim S,,,_; for m > 1. For
example, the function g, defined by

()= {0 x€la, xs_1],
go X—Xs—1, X€[x5-1, 0]

is for m >1 an element of G, but not of S,,, ;.

In [15] we have proved that t any CC space G is an element of ¥,. Thus it is only to
examine in which case G is in 7/' We get:

LEMMA 4.2. Let G in W, be a CCspace. Then G is in ‘V if and only if n;; =2 for any
Lje{l,---,s—1},i<j.

Proof Necessity: We assume that n; =3 for some tuple (i,j) with i,je

{1, -, s—1}. Since G" is also a CC space, we get n; =dim Gi= Zp i1l —(j—i=1).
Since n,=z1forp=i+1,---,j, there is, therefore, either some pe{i+1, - - -, j} with
n, =3 or there are at least two integers r,te{i+1, - -,j} such that n,=n,=2 and

n, =2 otherwise.

In the first case we can construct a function goe G satisfying go=0 on
[a, x,-1]1U[x,, b] and go((x,-1+x,)/2) = 1. Since x; >a and x; <b, go has two separated
zero intervals in [a, b]. But this is a contradiction of the hypothesis that G € ¥/,..

In the second case we can choose two knots x,, x, with x; = x, <x,+1 <x,=x; such
that n,.1y=n,=2 and n,=1 for all pe{r+2,---,t—1}. Then n,=dimG"=
Yoo p—(t—r— 1) =3 and n,41,, =Ny =2, Applymg Lemma 2.3 to the weak
Chebyshev space G" we can construct a function go€ G satisfying go=0 on [a, x,]U
[x, b] and go 0 on [x,, x,]. But this is a contradiction again.

Sufficiency: We assume that G is not in ¥,,. Therefore, there exists a function
go€ G having two separated zero intervals [xy, x;], [x;; xi]), x; <x;, such that go#0 on
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[xi, xi+1] and on [x;—1, x;). If x;+1 = x;, then go 0 on [x;, x:+1]). Since go has at least the
two zeros x; and x;.; on [x;, x;+1], it follows from Definition 1.1 that n;+1=3.Butthisisa
contradiction of the hypothesis that n; =2 for any i, je{l,---,s—1}.

If x;,1<xj, then because of go(x;)=0, go(x;)=0 and g0¥0 on [x;, x;+1] and
on [x;-1, x;] we get n;,1 =2 and n; =2. Here we have to consider again that G and
G' are Chebyshev. Then n;=dim G’= Zp i hp—(G—i=1) >2+Zp i Bp+2—
(J=i—-1)=2+j—i—-2+2~(j—i—1)=3. But this is a contradiction again.

Thus it follows from Theorem 3.1:

THEOREM 4.3. Let G in W, be a CC space. Then there exists a continuous selection
for Gifand only if n; =2 forany i, je{l,---,s—1}, i <J.

Remark. The dimensions no; = 1y and n,_1 s = n, of the Chebyshev space G'or G,
respectively, are not considered in the above characterization. Therefore, the existence
or nonexistence of a continuous selection depends only on the ‘“‘inner”” dimensions n,,
p=2,---,s—1.

Thus, if we choose only one knot a =xo<x;<x,=b, then we always get a
continuous selection for any choice of the dimensions n; and n..
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ON THE BOUNDARY VALUE PROBLEM FOR SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS WITH A SINGULARITY
OF THE SECOND KIND*

FRANK R. DE HOOGt anp RICHARD WEISSH
Abstract. A Fredholm theory for linear boundary value problems (*y'= G(f)y +g(¢), 0<t=1, ye
C[0,11N CY0, 1], « =1; Boy(0)+ B,y(1) = y is established, together with existence and regularity results
for continuous solutions of nonlinear systems of ordinary differential equations :*y’ = f(¢, y). This theory is
applied to boundary value problems on infinite intervals and is illustrated by two examples. Finally, some

fundamental properties of the generalized linear eigenvalue problem *y'—(G(t)—AH(¢))y =0, 0<t=1,
ye C[0,11N CY0, 1]; Boy(0)+ B,y(1) =0, are derived.

1. Introduction. Boundary value problems for singular systems of ordinary
differential equations

t*y' =f(@y), 0<t=1, yecC|o, 1]nc'(o, 1],
b(y(0), y(1))=0

where a =1, y is an n vector and f, b are continuous nonlinear mappings on appropriate
domains, and linear eigenvalue problems

t*y' —(A@)+AC(t)y =0, 0<r=1, ye C[0,1]1N C(0, 1],
Boy(0)+B1y(1)=0

(1.1)

(1.2)

where A, C € C[0, 1] and By, B; are matrices, often occur in applied mathematics.
When a =1, (1.1), (1.2) are said to have a singularity of the first kind, while the
singularity is of the second kind when « > 1.

The case @ =1 is obtained, for instance, when partial differential equations are
reduced to ordinary differential equations in the presence of symmetry. A variety of
examples can be found in Rentrop [10], [11]. Certain analytic aspects of problems with
a singularity of the first kind and their numerical solution by difference schemes have
recently been studied in de Hoog and Weiss [3], [4], [5].

A singularity of the second kind arises when a differential equation on an infinite
interval is transformed to one on a finite interval. There is a large variety of sources of
differential equations on infinite intervals, ranging from exterior problems for elliptic
equations in separating coordinates to similarity solutions of the equations of boundary
layer theory, see Schlichting [13]. Eigenvalue problems (1.2) with a singularity of the
second kind are common in quantum physics.

The present paper provides a study of basic analytic properties of (1.1), (1.2) for
a >1. We establish a Fredholm theory for the case when (1.1) is linear and provide
existence and smoothness results for nonlinear problems. This theory is applied to two
examples. Finally we investigate some fundamental properties of invariant subspaces
associated with isolated eigenvalues of (1.2).

The results developed here also provide the analytic background for the derivation
and analysis of approximate methods for the case a > 1, which is examined in de Hoog
and Weiss [6].

2. The scalar case. Here, we examine the equation
2.1) 1y — Ay =t""g(1), 0<t=1, Rear#0,

* Received by the editors April 12, 1977, and in revised form October 11, 1978.
+ Computer Centre, The Australian National University, Canberra, Australia.
i Institut fiir Numerische Mathematik, Technische Universitét, Vienna, Austria.
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42 FRANK R. DE HOOG AND RICHARD WEISS

where a, p arereal, @ >1 and g € C[0, 1]. The study of such scalar equations is the first
step in the analysis of vector systems. The general solution of (2.1) is

(2.2) y(H)= Y()y(8)+ Y () L Y~ (s)s~ g (s) ds

where
Y(t)=exp[A (8" —1'"%)/(a—1)]

and 0<8=1. For the analysis of continuous solutions of (2.1) it is convenient to
examine the operator %, defined by

-

t
t""“Y(t)j Y '(s)s°g(s)ds; 0<t=1,ReA<0,
0

(B,g)(t) = tp—aY(t)J- Y‘l(s)s“"g(s)ds; 0<t=1,Rer>0,
s

—g(0)/A; t=0.

We shall now establish various properties of %3,. As the proofs of these results are very
similar for o = Re A <0 and o >0, they will be given only for the case o <0. However,
all arguments carry over to o > 0 without difficulty.

The first result we require is

LEMMA 2.1. Let g€ C'[0, 1]. Then

(i) if Re A <O,

(Bo8)(1) ={(a = p)t* " (Byr1-a8) () + 1 (By—ag) (1) — g(D)}/A
and
(ii) if Re A >0,
(Bog)(t) = {(c = p)t* ™ (Bps1-a8) (1) + 1% (Bo-ag") (1) — [g(£) = (/8)° Y ()8 (8) ]}/ .
Proof. 1If Re A <0,

(Bog)(0) ="~ (1) L [sY 1 (s)]s*~*g(s) ds.

Note that Y ' satisfies the adjoint equation

i -1 — _ysay—l
th O==At""Y (2)

and that
lim *7°Y " '(r) = 0.

t->0,

Integration by parts therefore yields the result for Re A <0. A similar argument
establishes the result when Re A >0. [
LEMMA 2.2. There exists a constant C independent of 8 such that

I9B.¢lls = Cliglls

where || - |ls = supic.s) | - |-
Proof. If o =Re A <0,

t
|(B,g)(1)| = 1o~ ¢~ ™/ (*7D j e e Vs dslgls,  0=t=6.
0
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Let

_ {1 , a—p=0,
" lmin {1, [0/2(a = )] ™"}, a-p<0.
Then, it is not difficult to verify that

a—p otl=a/(2(a—1))
§P eo-sl-a/(2(a_1))<{ t e . O§S§t§51
= —_ 1—c —_

8? P ecnSl /(2(x 1)),

Combining these estimates, we obtain that

P eosl““/(2(a—1))§ Clta—p eo'tl“"/(Z(a—l)), 0

lIA
L}
i\
IA
“H

where

C; = max {1 81 }

and hence
(@)0] 5 Cre™ /e [ et g,
0

=-2Cilgls/ o,

=t

IIA

This establishes the result for Re A <0. A similar argument can be used when
Rer>0. O

Lemma 2.3, If ge C[0, 1] then B,g € C[0, 11N C'(0, 1].
Proof. Clearly, B,g < C(0,1]1N C'(0, 1], and it only remains to show that

,133 (B,8)(t) = —g(0)/A = (%,8)(0).

For Re A <0, Lemma 2.1 yields

—8(0)/A =(B,g(0))(1) +(p — @)t (Bos1- 1) (Dg(0)/A.

Hence, from Lemma 2.2,

|(B,8)(t) — (B,8)(0)]| = (B,[g — g(O))(2) — (p — @) g (0)t* " (Bps1-a 1)(£)/A|
= const. {s:gpt) g(s)—g(0)]+ 7! g(0)]}.

Since g is continuous and a — 1 >0 it follows that the term on the right hand side can be
made arbitrarily small. This establishes the result for Re A <0 and a similar argument
can be used if Re A >0. [

Further smoothness can be established when « is an integer. In particular, we have

LEMMA 2.4. Let a be an integer greater than one and g€ C™[0, 1]. Then, B,g €
c™0,11NC™"*(0, 1] and

(@)™ ()| =const. T [g“(0).

Proof. Differentiation yields
(2.3) (B,8)' (1) =(p — a)(Bog)(1)/t + A (B,g) 1)/ t* + g(£)/*.
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If Re A <0, two applications of Lemma 2.1 to (2.3) give
(Bog) ()= (p — a)(B,g)(t) = (Bo-a+18)(1)]/t +(B,-a8")(?)
(2.4) =(p—a)l(a=p)t" *(By-a+18)(t)

1% (Bp-a) ) — Ra —p = 1)t* " (Bpr2-248) (1)
— 1" (Bpr1-28) VA + (Bo-ag)(1).

The result for m = 1 now follows from Lemma 2.3. A simple inductive argument based
on (2.4) completes the proof for Re A <O0.
For Re A >0, two applications of Lemma 2.1 to (2.3) yield

(2.5) (Bog) (1) =(p—a)(@=p)t" X (Byos18) (1) +1° " (B,-ag (1)
—QRa—-p- 1)ta—2(%p+2—-2ag)(t)
— 1" (Bpr1-2a8 ) (DA + (Bp—ag ) (1)

l-a

+ gw)Y(ﬁ(é)p—a[(p —a) AT T 4 (o —-p)(ai) t‘lA“]

and the result follows as previously. U

We now return to (2.1) and examine continuous solutions.

LEMMA 2.5. If Re A <0, a>1 and p =a, then for every ge C[0, 1] there is a
unique y € C[0, 1] which satisfies (2.1).

Proof. From (2.2) every continuous solution of (2.1) satisfies

y(0)=Y() L Y '(s)s °g(s) ds + Y(t)[y(6)~L Y !(s)s "g(s) ds]

. 8
= B0+ Y () y(6) - j Y (s)sg(s) ds].
Clearly,
lim Y(t) =00

t~>0"

and from Lemma 2.3, %,g € C[0, 1]. It follows that y € C[0, 1] iff

F)
y(8)— L Y }(s)s "g(s) ds =0,

and hence the unique y € C[0, 1] is

y(6)=1"""(B,g)(0). O

LeEMMA 2.6. If Re A >0, a > 1 and p = a, then for every g € C[0, 1] and scalar n,
there is a unique y € C[0, 1] satisfying (2.1) and y(8) =n.
Proof. As in Lemma 2.5 the solution has the form

y(@&)=Y () +1"""(B,g)(2).

Since Y € C*[0, 1] the result follows from Lemma 2.3. 0
Combining the results of Lemmas 2.5 and 2.6 we obtain

THEOREM 2.1. Leta>1, p=a and g € C[0, 1]. Then every continuous solution of
(2.1) has the form

y()=PY()y(8)+t* " (B,8)(1),
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where P=0 if Re A <0 and P=1 when Re A >0.
We now consider (2.1) when a = 1. Define

1
I §%*g(ts)ds, 0=t=1,Rer<0;p=1,
0
(2.6) (%,,g)(t)=<t"J' §*"Vg(s)ds, 0<t=1,ReA >0;p=1,
8
g(0)

— t=0.

A+p—1)

THEOREM 2.2. Leta =1, p be as in (2.6) and g € C[0, 1]. Then
(i) 9,glls = const. |iglls,
where the constant is independent of 8,
(i) B,ge C[0,11NC(0,1],
(iii) for Re A <0 and g € C'[0, 1] we have B,g € C'[0, 1] and

(Bog) =Bo-18'
(iv) every solution of (2.1) which is in C[0, 11N C*(0, 1] has the form

A

v =P(3) y@)+ @00

where P=0 if ReA <0 and P=1 if Re A >0.

Proof. (i) Thisis clear for Re A < 0, while for Re A > 0 it follows immediately from
Lemma 3.4 in de Hoog and Weiss [3].

(ii) Again, the result is obvious for Re A <0; for Re A >0 see Lemma 3.4, de
Hoog and Weiss [3].

(iii) The proof is obvious.

(iv) See pp. 778-779 in de Hoog and Weiss [3]. O

Remark. When a > 1, p =« and a, p are integers, it follows from Lemma 2.4 that
the solution y of Theorem 2.1 is in C™[0, 1] provided that g € C™[0, 1]. For @ =1 this
is true when Re A <0, but does not hold for Re A > 0. In this case the smoothness
properties of y depend on the size of Re A as well as g; as can be seen from Theorem 2.2,

@iv).

3. Linear systems. Initially we examine
3.1) t%y'— My =1t*""g(1), 0<t=1, az=l1,

where M is an n X n matrix whose eigenvalues A; satisfy Re A; #0, j=1,---, n. The
general solution is

(3.2) y(@&)=Y(@)y()+Y() L Y 7 (s)s°g(s) ds

where

exp[M(©S* "=t N/(@—1)], a#1,
[/61" =exp[log (¢/5)M],  a=1

is the fundamental solution satisfying

Y(0)= {

t°Y'— MY =0, 0<t=1, Y(6)=1,
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and 0<6=1. Let

Q=—17J‘ A =M)tdr
27Tl r_

(3.3) .
T At
=5 L+ A —M)"" dAr

where I'- and I'; are closed contours in the left- and right-hand side of the complex
plane respectively such that each eigenvalue of M is enclosed by either I'_ or I'..
Clearly, Q and P are projections onto the invariant subspaces of M associated with the
eigenvalues having negative and positive real part respectively.

Via the Jordan decomposition of M it is straightforward to obtain an explicit
representation of Y'(¢). This representation immediately yields

LEMMA 3.1. Let a = 1. Then for an arbitrary vector n, Yn € C[0, 1] iff On =0.

For a > 1 we define

Y () J; QY '(s)s °g(s) ds

(Bo8)(1) =1 +1°7%Y (8) j PY—l(s)s“’g(s) ds, 0<t=1,
8

[ —M"'g(0), t=0.

The above operator is the analogue of %, defined in § 2. This becomes apparent on
noting that (for a >1)

1 1 —tl—ax — —
Y(t)OY'l(s)=:2—7;L M e T ML d),

— 1 1~a—tl—a . -
Y(t)PY 1(s)=——,j T O~ M) d),
2mi T

+

which yields

1 artmaftaen) [ Asi-ajta1) — _
(%pg)(t)=—.j P e T ”I e @ Vg AT - M) g(s) ds dA
270 r_ o

(3.4)

t
+—1—, J P M/ D j e T @ Dgme (AT -~ M) " g(s) ds dA.
27Tl . F)
Since I'_ and I'. are contours in the left- and right-hand sides of the complex plane
respectively, the results of § 2 immediately yield

LEMMA 3.2. Leta>1 and g€ C[0, 1]. Then

(i) [|B,glls = const. ||glls
where the constant is independent of &

(i) B.geCl[0,11NC'(0,1].

Regarding continuous solutions of (3.1) we find

LEMMA 3.3. Let a>1, p=a and g C[0, 1]. Then every y € C[0, 11N C*(0, 1]
which satisfies (3.1), has the form

(3.5) y()=Y()Py(8)+t* " (B,8)(t).

Proof. Equation (3.2) may be rewritten as

)
y(&) =Y (£)Py(8) +1t*"°(B,g)(t) + Y(t)O[y(ﬁ)—j0 QY '(s)s°g(s) ds).
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From (3.3), QPy(8) =0 and, from Lemma 3.2, B,g € C[0, 1]. Lemma 3.1 now yields
the result. O

For the case a =1, Theorem 2.2 yields
LEMMA 3.4. Leta=1,geC[0,1), p=1 when P=0,p =1 when P#0, and

1
J Qs M**Dg(15) ds
0

(%pg)(t)= +th Ps-(M+I)g(s) ds, 0<t=1,
8

-(M+(—-1)I)"'g(0), t=0.

Then the results of Lemmas 3.2 and 3.3 are valid.
Finally we consider the case when in (3.1) @ =0, p =0 and M =0. On defining

t

Bog)0)= | g(s) ds

&
we immediately obtain

LEMMA 3.5. Leta=p =0, M =0 and g e C[0, 1], Then
() |Boglls = 8lglls
(ii) every y € C[0, 11N CY(0, 1] satisfying (3.1) has the form

y(£)=y(8)+(Bog)(2).
We now examine the system
(3.6) Ty -My(t)=g@t), 0<t=1,

where y, g are n-vectors, g € C[0, 1], and

Mll M12 T er
O m=| 0 Mo My,
0 0 0 M,
(i) T(¢)=diag (¢**Iy, t*205, - - -, t™1,), where the I, are unit matrices;
(iii) eithera,z=1,k=1, - -, rorax =1, k=1,---,r—1and a,=0;

(iv) each M is a square matrix of the same size as I, which is nonsingular when
ai # 0 and has no eigenvalues that are purely imaginary. When a, =0, M,, = 0.
In the sequel we shall say that

Condition 3.1 holds if all o, are integers, and M, has no eigenvalues with positive real
part whenever a; = 1.

Let
M=D+U, D =diag(My,, My, -+, M,),
Y () =diag (Y1(1), - - -, Y, (1)),
P=diag (Py," - -, P,),

Q=diag (Qy, -, Q,)
and

diag (0’ Tt 07 Ir), ay = 0,

R=I—P-—Q={ 0 , a,#0,
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where
exp[(6' " —t' " )M/ (ar —1)], ar#1,
exp [log (¢#/8)Mi] , =1,

and Py, Q, are defined by (3.3) with M replaced by My, if a; #0 and P, = Q, =0 if
a, = 0. In addition, define

Yk(t)={

(Be)(1) = Y (1) j QY (s)T " (s)g(s) ds

t

+Y(®) L PY ()T '(s)g(s) ds +R L g(s) ds.

From Lemmas 3.2, 3.4 and 3.5 we obtain

LEMMA 3.6. Let ge C[0,1]. Then

(i) ||Bglls = const. |lglls, |BRgls = 6/|Rg]ls

where the constant is independent of 8,

(i) Bge Cl0,1]1NCY(0,1];

(iii) ((I - R)%$Bg)(0)= (B -R)g)(0)=—(D+R)'(I-R)g(0).

With the aid of Lemmas 3.3, 3.4 and 3.5, it is easy to verify that any continuous
solution of (3.6) must satisfy

y(O) =Y ()[Py(8)+Ry(8)]+(B[Uy +gN(*)
=Y(@)(P+R)n+(B[Uy +gN(®)
where 1 = (P+ R)y(8). Now consider the iteration
Yorr() = Y(O)(P+R)n +(B[Uy, +¢g)(1), »=0,1,---5  yo=0.

Since P, Q, R, Y (¢) and T(t) are block diagonal and U is strictly upper triangular it
follows that

(BU =0, k=n

Hence
3.7) y() =y () = D(t)n +(Hg)(2), k=n,
where
()= ¥ [(BU)Y(P+R0)
and
(3.8) F=3 (BUYR.
k=0

Some basic properties of  and ®(¢) which are immediate consequences of Lemma
3.6 and the structure of Y(t), ®(¢) and  are listed in

LEMMA 3.7. Let g€ C[0, 1]. Then

(i) ||#glls =const. ||glls, |Rglls =const. 5||Rglls,

where the constants are independent of 6,

(i) 9¢g e Cl0,11NCY(0, 1],

(iii) (3g)(0)=—(M+R)™'(I-R)g(0)+ (M +R) " (BRg)(0),

(iv) ®e C[0,1]NC(0,1] and ®(0)=(M +R)'R.
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Furthermore, if Condition 3.1 holds, then ®e C™[0, 1], and if in addition a, #0, then
®(¢) and all its derivatives vanish at t = 0.

The most general linear equation that we shall consider is
3.9 T@y-(M+AM)y@®) =gk, 0<:=1, yeC[0,1]NC'0,1],
where T, M are defined as previously, A, g e C[0, 1] and
(3.10) (I-R)A(0)=0.
It follows from (3.7) that every solution of (3.9) must satisfy
(3.11) y(&) = ®(1)n +(3g)(¢) + (#Ay)(1)
where n = (P+ R)y(8). Now for some 1 € X,, consider the iteration
(3.12)y,+1(6) = D[P+ RIn + () (1) + (¥Ay,)(1), v=0,1,2,--+; yoeC[0,1].
From Lemma 3.7, y,eC[0,1], |[|%g|ls=const.|gls and ||#A|s=const.
(If =R)A||s + 5|RA||s). Hence, by (3.10), the iteration is contracting for ¢ € [0, §]if 8 is
taken sufficiently small. This establishes the existence and uniqueness of a continuous
solution of (3.11) on [0, §] for any n when & is sufficiently small. A standard contraction
and translation argument on the rest of the interval now establishes the existence of a

unique solution there.
Hence, every solution of (3.9) satisfies

(3.13) y(O)=Z()n +(9g)(1)
where
G=(I-HA)'%  Z=(I-%A)"D,
and
n=(P+R)y(5)

when § is sufficiently small. Note that Z is the unique solution of
(3.14)
T()Z'(t)—(M-+A)Z(t)=0; PZ(8)=P, RZ(8)=R, ZeC[0,1]1NC"(0,1]
and that y = 9g is the unique particular solution satisfying

TOy'O)—-M+A@)y@)=g();  Py)=0,

Rj(8)=0, yeC[0,1]1NCY(0,1].

Let p=rank [P+ R], W be an n X p matrix consisting of linearly independent
columns of P+ R, and define

(3.15) X(@)=Z(t)W.

Then, by (3.13), we have
THEOREM 3.1. Any solution of (3.9) has the form

(3.16) y(@)=X@®)B+y(t)

with a unique B € X,,.
We now consider (3.9) subject to the linear boundary conditions

(3.17) Boy(0)+B1y(1)=v.
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Our aim is to establish conditions on By and B; which lead to a Fredholm alternative for
(3.9), (3.17). To do this, it is convenient to introduce the differential expression
l(y)=Ty'=(M+A)y
and associate with it the operator defined by
Ly =1(y)

for ye @ ={y € C[0, 1]|Ty' € C[0, 1], Boy(0)+ B;y(1) = 0}. Then we have
THEOREM 3.2. If

(3.18) rank [By, B1]=k

then & is Fredholm with index p — k. Furthermore, if £ exists, it is bounded.
Proof. From (3.16), y and I(y) e C[0, 1] iff

(3.19) y()=(9)O)+X (B =F()+X(1)B

for some g e C[0, 1] and B. Hence, y € 9 iff (3.19) holds and
[BoX (0)+B1.X (1)]B =—[Boy(0) + B1y(1)].

Thus g € C[0, 1] is in the range of % iff

(3.20) Boy(0)+B1y(1)erange [BoX (0)+ B X (1)].

To examine this condition, we need only examine the k linearly independent rows
of [By, B1]. Hence we may assume that B, and B; have k rows.

Letrank [Bo X (0)+B;X(1)]=qandv,l=1, - -, k —q be abasis for the nullspace
of [BoX (0)+B1X (1)]*. Then (3.20) is satisfied iff

(3.21) vf[Boy(0)+By(V]=0, I=1,--,k—q.

We now show that the k —q linear functionals on C[0, 1] defined by (3.21) are
linearly independent. If this were not so, then there would exist a nonzero vector w in
the nullspace of [BoX (0) + B:. X (1)]*, i.e.

(3.22) w*[B,X(0)+B1X(1)]=0
such that
(3.23) w*[Boy(0)+ B1y(1)]=0.

By (3.16), (3.22) and (3.23),
w*[Boy(0)+B1y(1)]=0

whenever y satisfies (3.9) for some g. As the set of such y contains C'[0, 1], it follows
that

W*[Bo, Bl] = Oa

which contradicts (3.18).

Thus, the range of £ is the intersection of the nullspaces of k—gq linearly
independent bounded linear functionals on C[0, 1]. So the range is closed and its
codimension is k —q. Clearly the nullspace of £ is {X (¢)8|[BoX (0) + B; X (1)]8 =0} and
so has dimension p —gq.

To establish that £ is Fredholm with index p — k it remains to show that % is closed.

Let y, be asequence in & such that y, » y and v, = Ly, - v as v - 00. Since the range of
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Z is closed it follows that v € range (¥) < C[0, 1] and

y(6)=Z()[Py(8)+Ry(8)]+(9v)(1) € .

Hence % is closed.
As % is closed, & with the norm

")’”52 = ")’”oo+ "x)’”co

is a Banach space. Hence if ¥ exists it is bounded by the bounded inverse
theorem. 0

Observing (3.10) and noting that B and R commute, we obtain from (3.11) and
Lemma 3.7, (iii), (iv),

(I =R)(M +R)y(0)=—-(—R)g(0).
Since (I — R)(M + R) = M, this yields

(M +R)y(0)= (R —I)g(0)+Ry(0),

G2y y(0)= (M+R)™ (R~ D)g(0) + Ry(0)).
Hence the boundary conditions (3.17) are equivalent to
(3.25) BoRy(0)+B1y(1)=7

where

7=7v+Bo(M+R)"'(I-R)g(0).

It turns out that (3.25) is advantageous for some numerical schemes applied to the
boundary value problem in question.

In applications we are primarily interested in the case when £ is Fredholm with
index zero. We therefore assume that By, B; are p X n matrices, v is a p vector and that
(3.18) holds with k£ = p. On substitution of (3.16) into (3.17) we find

THEOREM 3.3. The problem (3.9), (3.17) has a unique solution for all g € C[0, 1]
and v iff the p X p matrix [BoX (0)+ B1X(1)] is nonsingular.

Remarks. The restriction that the solution be continuous at ¢ = 0 is unsatisfactory
when constructing numerical schemes. What is desired in this case is an algebraic
restriction on the solution. It turns out that the relation obtained from (3.24),

(3.26) Qy(0)=Q(M +R) (R~ I)g(0)+ Ry(0))

is satisfactory. Equations (3.25) and (3.26) are the » linearly independent boundary
conditions which must be employed when (3.9), (3.17) is discretized by a difference
scheme. This and related questions are discussed in de Hoog and Weiss [6].

Clearly, certain extensions to the above theory are possible. For example, the
structure of M can be generalized to M = D + U where D is the block diagonal matrix
defined previously and U satisfies S;US,U - - - S,U =0 for any set of block diagonal
matrices Sy, - * -, S,.. Then Lemma 3.7 and all subsequent results can be established in a
straightforward manner. Also M can be replaced by M + E when ||E| is small. In this
case, the iteration corresponding to (3.12) will still converge and all subsequent theory
is easily extended. Such an analysis can be used to examine the perturbation in the
solution due to perturbations in the boundary conditions and in the coefficients of the
differential equations.

Another possible extension is to allow that the coefficients of RA be in C(0, 11N
L4(0, 1) rather than in C[0, 1]. The iteration (3.12) still converges when & is sufficiently
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small and hence Theorems 3.1, 3.2 and 3.3 remain valid. It is for this reason that we
have not treated explicitly the case where some of the a, are in (0, 1).

4. Nonlinear problems. Here we examine systems of the form
(4.1) T(t)y'-f(t,y)=0, yeC[0,81NC'(0, 8],

where T is as in (3.6), and f is a nonlinear mapping from a subset of [0, 1]x X, to X,,.
Under appropriate hypotheses on f we shall derive an existence result for (4.1) with §
sufficiently small.

We now list these hypotheses.
(i) There is vector ¢ € X, with (0, {) in the domain of f, such that

(I-R)f(0,{)=0.
With ¢ and some po,> 0 we associate the set
S, ={zeX,||z—-¢|=po}
(ii) f(¢, z) and 8f (¢, z)/dz are continuous on [0, 1]X S, 0,
(iii) The matrix

M=(1—R>M=(I—R)§;f<o, 0

is block upper triangular as in (3.6).
THEOREM 4.1. Assume that the above conditions hold. Then there are positive
constants v, 8 and p = po such that (4.1) subject to the conditions

4.2) (P+R)y(8)=(P+R)n+(P+R)¢
has a unique solution on
Sps =1{x € C[0, 8]l ||lx — ¢lls =0}
provided that
|(P+R)n|=1y.

Proof. By hypothesis (ii) there are constants F and L and nondecreasing scalar
functions a, b € C[0, 1], ¢, d € C[0, 0] with a(0) = b5(0) = ¢(0) = d(0) = 0, such that for
allte[0,1]and z € S,,,

(4.32) |f(1, 2)| =F,

(4.3b) |§-§-(t,z) =1L,

(4.3¢) I =R)(f(t, 2)~-M(z =) =a@)+c(z~ DIz~ ¢,
(4.3d) I(I—R)(g(t, z)—M)‘ <b(t)+d(z - 2)).

We now rewrite (4.1) as
Ty &) -My—-O—-T—-R)(f(t,y)-M(y—{)—Rf(t, y)=0.
With the new dependent variable x = y — ¢, the problem (4.1), (4.2) becomes
T(t)x'—Mx—(I ~R)(f(t, L +x)—Mx)~Rf(t,{+x)=0,
(P+R)x(8)=(P+R)n.
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By (3.7), this can be written as
(4.4) x =W(x),
where
(W(2))(2)
=®(N(P+R)n+(HUI—R)f(-,{+2)-Mz))(6)+(¥Rf(-, {+2))t).
We now show that ¥ is a contraction on
T,s ={x € C[0, 8] llxlls = p}

for sufficiently small §, p and |(P + R)n|. First, note that although ®(¢) and H depend on
8, we have the estimates

(4.6) IPls=¢,  |%zlls = h(8|Rzlls +I(I - R)z|ls)

where the constants ¢ and h are independent of 8. The first estimate follows from the
definition of ® and Lemma 3.6(i), while the second estimate is just Lemma 3.7(i). When
z € T, s it follows from (4.5), (4.6) and (4.3a, c) that

[¥(2)l|= ¢|(P+R)n|+h(8F +a(8)+c(p)p).
Hence if p, 8 and vy are taken so small that
(4.7) he(p)=3,  h(3F+a(8)=p/3, ve=p/3,

then ¥ maps T, 5 into itself. The mean value theorem for operators yields

(4.5)

W(z,)—W(z2)= %I —R) j (ba—f-( ., 22+s(zl-22))-—M) ds(z1—z2)

0 zZ

+#R(f(-, z1)—f(-, z2)), z1,22€ T, 5,
and using (4.5), (4.3b, d),
[¥(z1) = W(22)l|= h(b(8) +d(p)+ SL)||z1— 22|,
So, if in addition to (4.7), p and & are such that
(4.8) h(b(8)+d(p)+8L)<1,

then ¥ is a contraction on T, O

Let W be the n X p matrix introduced in § 3, whose columns span range (P + R).
Then for each 7 € X, there is a unique vector 8 € X, such that (R + P)n = WB. Hence
Theorem 4.1 ensures the existence of a p parameter family of solutions to (4.1),
parameterized by 8, with |8| sufficiently small, and p additional conditions are needed
to extract a particular solution out of the family.

Theorem 4.1 extends a result of Russell [12] who considers the case where the
matrix M consists of one block and has only eigenvalues with negative real part.

5. Smoothness results. Here we examine the smoothness of solutions of (4.1). Use
will be made of the following lemma.

LEMMA 5.1. Let Condition 3.1 be satisfied and g€ C™[0, 1]. Then

(i) #ge C™[0, 1], and there are linear operators g% Clo, 81~ C[0, 8], k=

0,--,0;1=1,2,---, with

where the constant Cf is independent of 8, and matrix-valued functions dfe
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C[0,8), k=0,---,1—1, with df(0)=0, such that
m m-—1
()™ =Y (Deg™)+ ¥ du(ng®6), 0=tss;
k=0 k=0

(ii) when R =0, there are matrices E¥ such that for h e C[0, 8],
(DFh)(0) = EFh(0).

Proof. (i) For the scalar case, the simplest cases of all, the result for a # 0 follows
immediately from Eqns. (2.4), (2.5) in Lemma 2.4 and Lemma 2.6(iii), respectively,
using induction in /. For « = 0, the result is obvious.

When M consists of just one block, the result follows at once from (3.4) for the case
a > 1, from the analogous representation of %, for « = 1, and the result is obvious for
a =0. This immediately yields the result for the case when M is block diagonal, i.e.
H=RB.

The general result now follows from the representation (3.8).

(i) when @, #0, (i.e. R =0), and 3'f/0t'(0,¢)=0, =0, - -, m, then y"(0)=0,
the general situation in the way outlined in (i). 0
The main result of this section is
THEOREM 5.1. Assume
(i) fsatisfies the hypotheses of § 4;
(if) Condition 3.1 is satisfied
(i) fe C™(0,1]xS,,).
Then
i) yeC™o0,81NnC™(0, 8];

(ii) when a, #0, (i.e. R =0), and 3'f/0t'(0,¢)=0, [=0,- -+, m, then y(')(O) =0,
1=0,---,m.

Proof. (i) We first assume that R = 0, and start with (4.4) which we write as

x(t) = ®()Px (8)+(36( - , x))()
where

0(t,z2)=f(t,{+2z)—Mz.
Note that by Lemma 3.7(iii), (iv)
(5.1) x(0)=-M""6(0, x(0)).
Since (%#g)(0) = —M 'g(0), it follows that
M~ =h,
where h is defined in (4.6). So (4.3d) and (4.8) applied to (5.1) yield
(5.2) x(0)=0.

The argument in the proof of Theorem 4.1 yields the (uniform) convergence of the
sequence

xO(t)=0’
xl’+1(t) = q)(t)Px(a)-'-(%o( T xi))(t)a i= Oa 1, Y

(5.3)
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to x(¢) on [0, 8], for § sufficiently small. By Lemma 5.1(i), x; € C™[0, §], and

@ 0=(2Y( L, 2+ x-M)e)0
(54) +(21 2, )0+ @, 420~ M)

+ @) Px (8) + dS(1)(f(8, £ +x:(8)) — Mx,(8)).

Now take & so small that

f

1| @ -l
“ |za;< e +X>-Mi|8=Cl<b<8>+d(||xu.s»< 1.

Then, as ||x; — x||s - 0 for i - o, the iteration (5.4) converges uniformly and x € C'[0, §]
with lim; e x{V (£) = x V().

When m > 1, successive differentiation of (5.3) yields iteration schemes for xP,
l=2,:-+,m,of the form

0
5.5) 220 =(9(L -, e x0-M)eP) 0+ rito),
where r! depends in a continuous fashion on x;, xﬁl), < xP For sufficiently small 6

the same argument as above yields convergence of these iterations; hence x € C™[0, 8]
and the proof for the case when R =0 is complete.

If R # 0, then it is clear that Ry € C'[0, 8]. After replacing Ry in f(¢, y) by Ry(?),
we may consider (4.1) as a differential system for the unknown (I — R)y only, and from
the above it follows that (I —R)y € C'[0, 8]. If m = 1 the result is proved. If m > 1, the
fact that y € C'[0, 8]implies Ry € C?[0, 8], which in turn yields (I — R)y € C*[0, 8], and
SO on.

(ii) Setting ¢ =0 in (5.4) and using (5.2) and Lemmas 5.1, 3.7(iv), yields the result
for m = 1. When m > 1, note that by Lemmas 5.1, 3.7(iv), r(0) > 0 as i > co when x;(0),
x(0), - - -, x{"P(0) tend to zero and (8%f/0t*)(0,¢)=0, k=1, -+, I The result now
follows by induction. 0

6. Problems on infinite intervals. Since problems on infinite intervals are a rich
source of singular equations, we shall now show how they fit into the framework
developed and give two examples.

Consider the linear first order system

(6.1) x'(r)=8S(r)(B(r)x(r)+h(r)), l=r<c
where

()  S(r)=diag (Ii7®, L%, - - - L+%)
where the I, are unit matrices of dimension=0, 8, =-1,1=k=r-1, 8, <-1,

(i) Be(C[1, ),

Nll N12 tre Nlr
0 Np -+ Ny
lim B(r)=N=| - . . .

T—>00

0 0 0 N,
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where each Ny is a square matrix of the same size as I, and is nonsingular if 8, =—1,

(iii) heC[1,00) and lim,.o h(7) exists.

We are interested in “regular” solutions of (6.1), i.e. solutions which tend to a finite
limit as 7 - 00,

The transformation 7 =1/t applied to (6.1) yields

(6.2) Ty -M+A@®))y=g(), 0<t=1,
where y(¢) =x(1/¢),

T(t) = dlag (Iltﬁl+2, et Ir~lt8'_l+2, Ir),

Mk=—le, (l, k)#(r’ r), Mrr=0
and

A@M)=-D)B(1/t)+M),  g(t)==D(t)h(1/1)
with
D =diag (Il, Ty Ir—l) Irt—B'—2)-

If B,=-2 then AeC[0,1], and if —2<B8,<—1, then I -R)AeC[0,1], RA€e
C[0, 11N LY (0, 1). So all results of §§ 3 and 5 are valid for (6.2) and give corresponding
results for (6.1). (Note the remark at the end of § 3.)

As an example we examine a problem which was considered recently by Franklin
and Scott [8]. The fourth order equation

(6.3) z¥r)+a(n)z(r)=0, 1=r<oo,
describes the horizontal deflection of a pile vertically imbedded in soil (r—1 is the

distance from the surface). Since soils usually get stiffer with depth we assume that the
foundation coeflicient a(7) has the form

a(r)=1%d(7), o=0,
with
deC[1,0), 0<d(r), 7€[0,0); lirg d(t)=p>0.
We use the transformation suggested in Coddington and Levinson [2, p. 169]

xi(r)= T_(l_l)KZ(I—l)(T), k=0/4; 1=1,2,3,4,

to rewrite (6.3) as a first order system

x'(r)=1"B(7)x(1)

where
0 1 0 0
0 — D 1 0
B(r)=| o 0 — 2k Y 1
-d(r) 0 0 =3k Y
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This is a special case of (6.1) with r=1, 8;=0/4 and
10

o o O

0
010
N=N11= 0 0 1 .

-p 0 0 O

The matrix M =—N of the transformed system (6.2) has the eigenvalues A, =
pl/t @V 1=1,2,3, 4, with

ReA;=ReA;>0, Re A, =Re A3<0.

So R =0, rank P=p =2, and by Theorem 3.1, (6.3) has exactly two linearly indepen-
dent regular solutions. By Theorem 3.2, two linearly independent conditions must be
imposed at 7 =1 to have a Fredholm alternative. We may prescribe any of the pairs
(y(1), y'(1)), (y(1), y"(1)), (y'(1), y"(1)), (y'(1), y"(1)), and (y"(1), y"(1)). In each case it
is clear from the physical interpretation of the problem that homogeneous boundary
conditions can only lead to the trivial solution; and the Fredholm alternative then yields
the unique solvability in the case of nonzero boundary values.

In the nonlinear case, Theorem 4.1 can be used to examine regular solutions of first
order systems

(6.4) x'(1)=8S(7)f(r, x), 1=7<00,

where f satisfies conditions analogous to (i)—(iii) in § 4. The resulting existence theory
for (6.4) is an extension of work of Chang[1], who considers systems (6.4) with r = 1 and
B1=0. An example is furnished by the Blasius problem

22"+22"=0, l=sr<00, z()=z'(1)=0, z'(0) =1,

which describes the boundary layer on a flat plate; see Schlichting [13]. This problem is,
of course, thoroughly understood, but its structure and the transformation to the form
(6.4) are typical for a variety of other flow problems. We write

=c+7+u

where c is a constant, and introduce the new dependent variables
X1=TU, X2= rzu’, X3= r3u"’, Xa=c.
Then x satisfies the first order system
X1 =x1/7+x2/7,
X2 =2x2/7+x3/7T,
=—1x3/2+(3/1—x4/2—x1/27)x3,
0.

(6.5)

s~ u~ N

X

This is a system of the type (6.4) with r=4, Ni;=Ni;=(1), N2 =(2), Naz=(1),
N33 =(—1/2), Ny = (0) otherwise, 81 =B>.=—1, B3 =1, B4=—2. Theorem 4.1 guaran-
tees the existence of a two parameter family of regular solutions of (6.5) on an interval
[, 00) with 7 sufficiently large. Each solution is uniquely defined by prescribing x3(7)
and x4(7).
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7. The eigenvalue problem. The eigenvalue problem we consider is
Ty —-(M+A)y=A(N+C)y, yeC[0,11NCY(0,1]
Boy(0)+Byy(1)=0
where T, M, A, B, and B, are as in § 3,

(7.1)

Nii Niz --+ Ny,
N=|0 Nz -+ Ny
0 e 0 N.,

is a constant matrix structured in the same way as M, and

(Cy))=Cy(), CeClo,1]

with (I —R)C(0)=0.
Employing the notation of § 3, we write (7.1) as

Ly ={L-AN+C)}y=0, y € 9.
Define

def (£,) = codimension of the range of %,

and
nul (£,) = dimension of the nullspace of .%,.

We assume that nul (¥)=0, i.e. & is invertible. Let () be the open connected set
containing zero such that A € Q) implies that all eigenvalues of (I —R)(M +AN)+R
have nonzero real parts. From Theorem 3.2, %, is Fredholm with index zero for A € ().
Furthermore we have

LEMMA 7.1. For each Ao€ Q) there is an € >0 such that nul (£,) = const. for all
o< l/\ - Aol <e.

Proof. Clearly,

g,\ = 2,\0+(A0“'A)(N+ C).

As N + C is bounded, it is also %,, bounded, and the result follows from Kato [9, Thm.
5.31,p.241]. O

Define the spectrum
A={Ar € Q|nul (£)>0}.

Since nul (¥) =0 Lemma 7.1 immediately yields

COROLLARY 7.1. Every compact subset of Q) contains at most a finite number of
eigenvalues.

We have established the first part of

THEOREM 7.1. (i) The spectrum A has no limit pointin Q. ForA & A, £x" exists and
is bounded.

(ii) Let

1

%o=———j LN+ C)da
T

2mi Jr,,

where Ao€ A, Th,={A€Q||X —Ao| =8} and & is so small that there is no A€ A with
|A1—A|= 8. Then P,,: C[0, 1]~ D is a projection with a finite dimensional range, which is
invariant under the mapping ' (N +C), A€ A.



SINGULAR BOUNDARY VALUE PROBLEMS 59

Proof. (i) Proceeding as in Dunford and Schwartz [7, pp. 600-601] we can derive
the identity

(7.2) Wil -L ' IN+C)=ul +E7(N+C), w=1/A;  A£A.
Hence

1
7.3 =— - -
(7.3) Pro=75 L“o(u LN+C) d,

where wo=1/Ao and I', is defined analogously to I';,. By (7.3) 2,, is a projection, and
the invariance of range (%,,) under the mapping £, " (N + C) follows from (7.2) and
standard properties of spectral projections.

To see that range (%,,) is finite dimensional we proceed as follows. It is easily
verified that wol — £ (N +C): @ > 9 is Fredholm with def (wol —F'(N+C))<o0
and nul (uol —£ (N + C)) < 0. Hence it follows from Kato [9 Thms. 5.10 (p. 233),
5.28 (p. 239)] that #,,9 is finite dimensional. But range(%,,)=2,,C[0, 1]=
ProProCl0, 1]< P,, D, whence range (P,,) =P\, 2. O

Letrange (P,,) =span {¢1, - - -, pg}. The ¢; are generalized eigenfunctions of (7.1)
corresponding to the eigenvalue Ao.

THEOREM 7.2. Assume that A, C € C™[0, 1] and that Condition 3.1 holds. Then
$;cC™[0,1]NC™*(0,1), j=1,- -, B. Furthermore, if a,#0 then ¢"(0)=0, [=
0, ,m;j=5L-,B.

Proof. As the range of #,, is invariant under FHUN+0),

B
$¢j=k§1 ajk(N+C)¢k’ j=19.”9B,

where the 8 X 8 matrix (a;;) has the single eigenvalue A, and can be assumed to be
in Jordan canonical form. Hence each ¢; is contained in a ‘“chain” of elements

{¢n ¢S, ¢.t, e } Satisfying
(7.4) L =0, Lids=(N+C)¢p, Lrdi=N+C)s,--".

The result now follows on applying Theorem 5.1 to each equation in (7.4). 0
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VALUE SET AT xe€{) FOR AN ARBITRARY DISTRIBUTION WITH
APPLICATIONS TO LOCAL EXTREMA OF feC(£) AND A MAXIMUM
PRINCIPLE FOR ORDINARY DIFFERENTIAL EQUATIONS*

R. E. WHITE®

Abstract. In this paper we define a value set at x € Q=R" which is nonempty for any distribution
u € 9'(Q). We use this notion to generalize the classical theorems for monotonicity (Q = R) and local extrema
for distributions in C(£2) which do not necessarily have classical derivatives. Also we show how these results
are applicable in developing maximum principles for ordinary differential equations which have coefficients
or an inhomogeneous term that may be distributions which are represented by locally integrable functions.

1. Introduction. The main result of this paper is the definition of a value set at
x =R" for any distribution u € 2'(Q). Roughly, a value set at x of a distribution reflects
the range of values for suitable approximating continuous functions. Our definitions
will give the following examples: One, the value set at x = 0 for the Heavyside function,
H(x)=0when x <0and 1 when x =1, is equal to [0, 1]. Two, the value set at x =0 for
the delta functional §(¢)=¢(0) where ¢ € D(Q), is equal to [0, c©]. Three, if f is
continuous at x, then the value set of f at x is {f(x)}. All distributions have a nonempty
value set at each x € (). Also if u € 2'(Q) has value at x as defined by S. Lojasiewicz [6]
(also see P. Antosik, J. Mikusinski and R. Sikorski [2]), then the value set is a singleton
with element being the value at x. In particular, the derivative of any distribution will
have a value set at x which we will call the derivative set at x of the original distribution.
Also any regular Mikusinski operator which properly contains 9, () as defined by T.
K. Boehme [3] will have a nonempty “value set at x”".

The idea of assigning sets with derivatives that do not exist classically has been
touched upon in at least two areas. One, in R. T. Rockafellar [8] the subdifferential of
convex functions from R” into R is defined as the set of 3(x) = {x* e R"|for all z e R” such
that f(z)=f(x)+x* - (z —x)}. In particular, if f is differentiable, then af(x) = {Vf(x)}.
The notion of a subdifferential of convex functions is used to study minmax problems.
The notion of value set is defined for all distributions and will be used to study minmax
problems for continuous problems. The value sets of the partial derivatives give more
information about the function being considered than just the subdifferential. Two, in
G. Stampacchia [10] the notion of a second derivative of a distribution being positive in
the sense of distributions is used. This is used to establish a weak maximum principle for
elliptic differential operators with badly behaved coefficients or inhomogeneous term.
For example, consider the well known steady state string problem with point force at x,
Lu=-u"=8(x—x0). Then u does not have a second derivative at x, and it does not
make sense classically to say that Lu =0. However, it is true for all 0= ¢ € D(a, b) =
C?Z (a, b) that

b b
(L)) = [~ dy = [ w6/ () dy = (xo) = 5(8)Z0.
Because of our more refined tools (value sets) for studying minmax problems, we are
able to establish a strong maximum principle for elliptic operators with badly behaved
(but not quite as bad) coefficients or inhomogeneous term. Because of these generaliza-

tions and the applicability of this notion, it seems the definition of a value set is and will
be of significance.

* Received by the editors May 14, 1976 and in final revised form November 8, 1978.
T North Carolina State University, Department of Mathematics, Raleigh, North Carolina 27650.
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In § 2 we review some of the pertinent facts concerning distributions. Section 3
contains the definition of value set of an arbitrary distribution as well as examples and
some of the basic properties. In § 4 we demonstrate via value sets that the classical
theorems about monotonicity and local extrema may be generalized to continuous
functions. Finally in § 5 we use the results of the previous sections to prove the strong
maximum principle for the ordinary differential equation (pu')' + gu'+qu = f where
0<m=peLu(a,b), gcLlola,b),q=Q’, f=F with Qe L (a, b) and F e Ly(a, b).
qu is defined via integration by parts as the derivative of Qu —[* Qu'e€ Ly(a, b). In
particular, g and f could be the delta functional or could be a function of the form x ™%,
a>%and Q=(-1,1).

2. Distributions. This section contains some of the basic facts about distributions.
For more details the reader should consult L. Schwartz [9].

A test function, ¢, on Q =R" is any C™(Q) function whose support, the closure in Q
of the set of x € () such that ¢ (x) # 0, is a compact subset of (). We will denote all such
test functions by Z((}). A sequence of ¢, € D((}) is said to converge in D(Q) to ¢ if and
only if (i) support ¢, ¢ = K where K is a compact subset of () independent of k and
(ii) (8'“'/8x‘1’“ ce X ) Dr —>(6|“|/ax‘1’“ +++dxny*)¢ converge uniformly on all compact
subsets of Q for all @ =(ay, ', @), a1, ,a, nonnegative integers and |a|=
a1+ - - +a,. A distribution, u, Q <R" is a linear map from 2(Q) >R (or C) which is
continuous; i.e., when ¢ = ¢ in D(Q), then u(¢r) - u(¢). The set of all distributions is
a linear space when (au + Bv)(¢) = au(d)+ Bv(¢) and is denoted by P'(Q)). Examples
include (i) u(¢) =], f(x)¢(x) dx where fe L°(Q) and often we shall write u = f, (ii)
u(d)=¢(0)=6(¢) the so called delta “function”, and (iii) u(¢)EZ;°=0 &'(j) where
Q=R.

The 8"/ax$ - - - ax & = D* derivative of ue D'(Q), P°u, is defined by °u(¢) =
u((—2)*¢) and is itself a distribution. Examples include (i) Q =R, u(¢)=H(¢)=
fo &(x) dx and so u'(¢)=u(-¢") =[5 —¢'(x) dx = $(0)=5(¢) and (ii) Q<R" and
u@)=J, fx)p(x)dx where feC'(Q) and so for J|a|=1, D*u(¢)=
fo F)(=2%)p(x) dx = —f(x)d (X)|aa+ o DF(x)b(x) dx = [o DF(x)(x) dx.

In general the product of distributions is not a distribution. However, the following
subsets of 2'(}) are closed in () under multiplication. First, consider ¢, i € C(Q)
and ue 2'(Q) and then define yYu(¢)=u(ye). Since Y € D(Q), the definition is
well-defined and in fact yu € 2'(Q). Second, consider fe L'S°(Q) and g € LY°(Q) and
define (fg)(¢) = [, f(x)g(x)d(x) dx. Because fge L5°(Q) <= L'°(Q), this definition is
properly defined. Third, let H_y(a,b)={qe D'(a, b)lq=Q’', QeLy(a,b)} and
Hi(a, b)={u € Ly(a, b)|u’' € L,(a, b)}. Define qu as the derivative of Qu —[x Qu'. Since
u'eLy(a, b), ue Cla, b] and so Qu e Ly(a, b). Also u', Q € Ly(a, b) implies Qu'e
Li(a, b) and so ]X Qu'e Cla, b]. Thus Qu —j'x Qu' € Ly(a, b) and consequently qu €
H_l(a, b)

Not all distributions have value at a point. S. Lojasiewicz’s [6] definition of value at
a point will exist only for certain distributions of finite order. In fact, the existence of this
value at xo€ () is equivalent to lim..o u(['.) existing where I', € C7 (S, (x0)), Se(x0) =
{xeQ||x—xd<e}, faTe(x)dx=1, T'.(x)=0, sup |2°T(x)|=0(¢™™"") where |a|=
the order of u=m and u=92°F, Fe C(Q). In this case the value of u at x, is
lim, .o u(T'.) and must be independent of the choice of ', € C¢" (S; (xo)). The definition
of symmetric value given by P. Antosik [1] is equivalent to lim, o u(¢) existing where
¢ € CT (S (x0)), d =0, ¢ is even about xo and |, ¢ (x) dx = 1. For example let ¢, (x) =
(n/c1) e VAT where ¢, =[x xols1/n e V4" dx and let u=H. In this case
lim, . u(¢,) =3 and in fact if ¢, is any such ¢, then u(¢,) =](}/" 1¢.(x) dx =% and
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consequently the symmetric value of u at 0 is 3. Clearly the value of u at x = 0 does not
exist in the sense of S. Lojasiewicz for the possible limits range from O to 1. It is
important to note that if ¢ € C3 (S, (x0)), ¢ =0, [ #(x) dx = 1 and u is continuous at x,
on S, (x), then lim. .o u(¢®) = u(x). Finally one should note that the delta ‘“functional”
does not have symmetric value and hence does not have value in the sense of
S. Lojasiewicz.

3. Value sets at x of distributions. Even though not all distributions have values at
a point, all distributions do have a nonempty value set at x, 2°(u, x). The value set of
u € 2'(Q) at x € Q reflects the values of suitable approximating functions of u. Since any
distribution has a value set, any derivative of a distribution has a value set or derivative
set of u at x. ;

The value or derivative sets will be subsets of the two point compactification of the
real line which is denoted by [—o0, ©]. Let T.(x)={¢p € CZ (S.(x))|x€Q, ¢ =0 and
fad(x)dx =1}, D2(u, x)={u(—D)°¢)|¢p € T.(x)} and DI (u, x)=[—00,0] be the
closure in [—00, 0] of D2 (u, x).

DEFINITION. The a-th order derivative setat x € Q< R" of ue 2'(Q) is 2*(u, x) =
N e=0D2 (4, x). The value set of u at x is D°(u, x). u is said to have value at x if and only
if 2%u, x)isa singleton and in this case we denote the element by u(x) and call it the
value of u at x. In case {) =R we may define left and right value sets and values at x of
u € 2'(Q) in the obvious manner.

Remark. The elements of T, (x) are called mollifiers. It is well known that they may
be used in the approximation of distribution by smooth functions. This suggests that we
use the set of values of approximating smooth functions for the definition of value set.
This has two drawbacks. First, it is not clear which set of approximating smooth
functions to use. Second, it is more difficult to prove the theorems in this paper.

Before giving some examples, we shall prove the following theorem which gives
some of the routine properties of value sets.

THEOREM 1. Let v, u € 2'(Q)).

1. 9°(u, x) # ¢ and is closed interval contained in [—0, ©©].

2. D*(u, x) = D2%(Du, x).

3. If u has value at x, then lim, .o u(¢d.) = u(x) where ¢. € T.(x).

4. The notion of value as defined in this paper is equivalent to the notion of value as
defined by S. Lojasiewicz. In particular, if u € LY*(Q) and lim, ., u(y) exists,
then the value exists.

5. If @°(u, x) = (— 0, 00) and left and right values at x, u(x +) and u(x — ) exist then
D%, x)=[u(x=), u(x+)] or 2°(u, x) =[u(x+), u(x-)].

6. D(u+v,x)=D(u, x)+D* (v, x). If D°u has value at x, then D* (u+v, x) =
Du(x)+ 2% (v, x).

7. Ifu, v e LY(Q), u is continuous at x and D°(v, x) < (=00, 00), then D°(uv, x) =
u(x)2°(v, x).

8. Ifue L(Q), ve L°(Q) and 0€ 2°(v, x), then 0€ 2°(uv, x).

9. Ifu,ve Hy(a, b) and u, u', v, v' have values at x, then (uv)' has value at x equal
tou(x)v'(x)+u'(x)v(x).

10. With the obvious assumptions, rules 6,7, 8 and 9 hold for right and left value set

and values when Q) <R.

Proofs. 1. 9D°(u, x) is an intersection of a nested family of closed sets contained in a
compact space. Thus 9% (u, x) # & and is closed. Since T, (x) is convex and u is linear,
95 (u, x) is an interval and consequently 9*(u, x) is an interval.

2. This is just notation since 2°u(¢)=u((—D)* ).
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3. Consider F.(x)={¢ccTx)e=¢e"}). Then the intersection
Neso {u(d)|p €. (x)} is closed and nonempty. Since I'. (x) < T.(x), the intersection is
also contained in 2°(u, x). Because 2°(u, x)={u(x)} and u(¢.)e{u(d)|¢ c.(x)},
u(¢.) must converge to u(x) as € > 0.

4. In order to see this, we need the following characterization of value in the sense
of S. Lojasiewicz which is proved in [2]: lim, . u(8,) exists and is independent of
8,€C7 (S1/n(x)) with 8, =0 and jsl/n(x) 5.(y) dy = 1. Property 3 implies that if 2°(u, x)
is a singleton, then this characterization holds. This characterization certainly implies
that 2°(u, x) is singleton.

5. Suppose u(x—)=u(x+). One can show as in the proof of property 3
that for ¢, €{peC(x—(1/n), X)|en =0, [I, du(y)dy=1} and éo,e
(Dn e CT (%, x+(1/n)|dn =0, [r  du(y)dy= 1} we have u(¢,)-»>u(x—) and
u(dn)->u(x+). Now let ¢,=A¢, +(1—-N)¢p, €Ti/n(x), 0=A=1 and u(y,)=
Au(epr)+@1 ~Mu(dn) > Au(x+)+(1=A)u(x-). Thus @"(u, x)2[u(x—), u(x+)].

In order to show 2°(u, x) < [u(x—), u(x+)], let v € 2°(u, x) and let ¢, € T1/n(x) be
such that u(¢,)-»v as n-0. Let R,eCy (x,b) such that Rk(y) =1 for ye
(x +(1/k), b —(1/k)) with k in general much larger than n. Let ¢y, —~j R, (y)dn(y) dy.
In a similar way define L, and dj, for the left side of x. Since Ri¢,/ck.» and Lid,/dx.n
are in Ty,,(x)NCT (x,x+(1/n)) and Ti,,(x)NCZ(x—(1/n),x), respectively,
U(Ripn/Crn) > u(x+) and u(Lydp,/di.n)> u(x—) as n->oc0. Also for each fixed n,
dintt(Lithn/ dicin) + Cic.ntd (Ribn/ Cin) > u(dn) as k-0, Since [opn(y) dy =1, cin=>Cn
di.n~> d, as k > and ¢, +d, = 1. Either the sequences {c,} and {d,.} or subsequences of
{c.} and {d.} converge to ¢ and d, respectively, and c+d=1. Thus u(¢,)~>
cu(x—)+du(x+)e[u(x—), u(x+)]. Consequently, D°(u, x) < [u(x—), u(x+)].

6. First, we show that 2*(u+v, x) = D*(u, x) + D (v, x) even when D (u, x) is
not a singleton. Let ¢, € T1/,(x) such that (u+0)(—D)*¢,)>s € D*(u+v, x). Since
(u+0)(—2)¢n) =u((—D)*¢n) + v((—D)*¢,) and by an argument similar to that given
in the proof of Property 3, we must have u((—2)°¢,) and v((—2)“¢,) or subsequences
converge to elements in 2*(u, x) and 9 (v, x). Thus s =r+¢ where re 2*(u, x) and
teP%(v, x).

Second, let 9 (u, x) ={@“u(x)} and show D°“(u+v, x) 2 Du(x)+2PD“(v, x). Let
re 2%(v, x) and ¢, € Ty/,(x) be such that v((—2)*@.) - r. By property 3 we also have
u((=D)°¢n) > D%u(x). Since (u+v)(—D)"bn) =u((=2)*¢,) +v(—2)*¢,) and (u+
V)((—D)*bn) > DP°u(x) +r, we have that D°u(x)+re 2% (u+vo, x).

7. First, we show 2°(uv, x) 2 u(x)2°0v, x). Let r€ 2°(v, x) and ¢, € T1/n(x) such
that v(¢,)~ r. Since u is continuous at x and u, v € LY°(Q), we have

o))~ u(x)o(d0)] = ||

w0 0) dy = [ u00)b,)
O (¢}

It
.
>

SO0~ u)B() &

iA
)

Lv(y)q&,,(y) dy’ésZr, n=N.

Thus u(x)r € 2°uv, x).

Second, in order to show that there is an 7 € 2°(v, x) = (—00, 00) such that s = u(x)r
when s € 2°(uv, x), let ¢, € T1,.(x) be such that (uv)(¢,) - s. Since u(x) exist, u(¢p,)~>
u(x). Now 2°u, x) is bounded and so either v(¢,) converges or a subsequence
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converges. If the latter is the case, u(¢,,) still converges to u(x) and so assume v (¢,,) > r.
Now apply the above inequalities to show s = u(x) - r.

8. Let ¢, € Ty/,(x) be such that v(¢,)—>0. Since y € L2°(Q), for y € support ¢,
there exist M such that —M =u(y)=M. Thus we have ||, u(y)v(y)d.(y) dy|=
M - ||, v(y)pn.(y) dy| and consequently (uv)(¢,)~> 0 and so 0 € D (uv, x).

9. Itis clear that uv € H,(a, b) and that (uv) = u'v+uv'. Since u', v' € L,(a, b), u,
v € Cla, b]. By properties 4 and 7 we have 2°(u'v, x) = v(x)2°(u’, x) = v(x)u'(x). By
property 6 we have D°((uv)', x) = v(x)u'(x)+D°(uv', x). Again by properties 4 and 7
we have 2°(uv', x) = u(x)v'(x) and so (uv)'(x) = u'(x)v(x)+v'(x)u(x).

10. These proofs follow by inspection of the previous proofs.

Examples. 1. Let u=H =the Heavyside function. Since lim,.o- u(y)=0 and
lim,_o+ u(y) =1 exist, by 4 and 5 we have 2°(u, 0) =0, 1].

2. Let u = § = the delta “function”. Clearly, by the proper choice of ¢, € T,,(x),
2°u, 0)>[0, ). If there exists r € 2°(u, 0) which is negative, then there are i, €
T1/.(0) such that u(y,)~>r. But u(y,)=H(—¢) =[5 —¥n(y)dy=—d.(»)}=¢ =
¥,(0)=0 and so we have a contradiction. Also 2°(, x) = {0} when x # 0.

3. Let u =68' and v =§8". Both 4 and v have the same value sets for each x e R,
namely, 2°(u, 0) = 2°(v, 0) =[~00, 0] and D°(u, x) = D°(v, x) ={0} when x # 0. Thus
the notion of value set of a distribution is in general not descriptive enough to retrieve
the distribution from the collection of all value sets. It was proven in [6] if all the value
sets are singletons, then we may retrieve the distribution from the collection of all
values.

4. The following examples show that the assumptions in properties 6, 7, 8 and 9
are to some degree necessary. If u =1 — H and v = H, then 9 (u, 0) =[—0, 0], @ (v, 0) =
[0, o] and D (u + v, 0) = {0}. Also 2°(v, 0) =[0, 1], 2°(u, 0) =[0, 1] and 2°(uv, 0) = {0}.
If u=x""?and v = x"/2, then 2°(u, 0+) = {+0}, D°(v, 0+) = {0} and D°(uv, 0+) ={1}.
Also 9 (u, 0+) ={—00}, D (v, 0+) = {+00} and D (uv, 0) ={0}.

5. u(@)=%;- (). 2°u, x)={0} when x is not a positive integer or zero.
2°(u, 0)=[0, 0] and D°(u, j) = [~0, 0] when j > 0.

6. See [6] or [2] for examples when the value exists at x but the distribution is not
continuous at x.

7. See the examples at the end of the next section for examples of distributions in
several variables.

As additional possible examples we note that the notion of a value set may be
extended from 2 (Q) to the regular Mikusinski operators, #%, as defined by T. K.
Boehme [3]. For those readers who are familiar with this paper we briefly describe this
extension. We shall use the notation of T. K. Boehme. A regular Mikusinski operator is a
Mikusinski operator, a, in which the following are in its equivalence class f,./ ¢, where
fn, @. € C =the usual convolution algebra of continuous functions and {¢,} is an
approximate identity. Thus the following sets are nonempty D, (a, x) ={f.(x)|a =f./ ¢..
for $.€C, ¢.=0, | ¢.=1}. Consequently, D%a, x) < [—00, 0] is a nested family of
closed subsets of a compact space and so D%(a, x) =N, -, D, (a, x) may be defined as the
nonempty value set of ac MR at x. If a=uec P, then f.(x)=u(x)d.(x) where
¢. € T.(0) and thus D%(a, x) > D2 (u, x) and upon intersection we have D%u, x) =
2°(u, x). Also if a =Zf=0 (1/(2k))s*, then D%a, x) ={0} when x #0. It is not clear
what 2°(a, 0) equals.

A shortcoming of the present notion of value set is that it is not descriptive enough
to retrieve the original distribution or regular Mikusinski operator from the collection
of value sets. We will not at this time discuss this problem or other obvious problems
relating value sets of general distributions or Mikusinski operators to the classical
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distributions. However, the present notion of value sets will prove quite useful in the
next two sections. We have only developed the properties of value sets which we will
need to study local extrema of u € C(Q) and the maximum principle. The maximum
principle was the original motivation for this study. The maximum principle will be a
crucial tool in another paper [11] in which monotone methods are used to construct
solutions to certain nonlinear problems. This method will be similar to the work of J.
Chandra and P. W. Davis [4].

4. Local extrema of u € C (). In this section we use the first and second order
derivative sets of u to test for monotonicity and local extrema. The methods of proof
basically follow the classical methods once the operator of differentiation is transposed
from 2'(Q) > 2'(Q) to D(Q) > D(Q).

THEOREM 2. Letu € L1(a, b). If uis increasing (decreasing) almost everywhere, then
D(u, x) < [0, 0](<=[—00, 0]) almost everywhere.

Proof. Suppose u is increasing almost everywhere;i.e.,0=u(x+h)—u(x)for h =0
for almost all x e (a, b)) and h +x €(a, b). If ¢ € T.(x) and h = ¢, then as h > 0 we have

1 b
ogzj (u(y +h)—u(y)d(y) dy

_ j u(y)(- 22— )) dy—>Lb u(y)(~6'(y) dy.

Thus for all ¢ >0, u(—¢’)=0 and so D(u, x) <[0, ].

THEOREM 3. Letu € C(Q)) and Q<= R". If x € Q gives a local maximum (minimum)
of u, then 0€ D (u, x) where |a|=1.

Proof. If 0¢ 9*(u, x) with |a|=1, a; =1, then because 2*(u, x) is an interval,
P°(u, x) is either contained in [d, +o0] or [—c0, —d] where d >0. Suppose 0<r =
min D°(u, x). There exists ¢, € Ty/n(x) such that [ u(y)(—1)(3/0y:)dn(y) dy>r
as n>o. Let N be such that n =N implies [q u(y)(—1)(8/3y:))d.(y) dy =r/2.
Now as |h|>0, h=(0, -, hy---,0), Joau)(—1)(daly —h)—d.(y))/(—h)dy~>
fa u(y)(—=1)(8/3y:)¢.(y) dy and so there exists § =8(n)>0 so that 0<h; <8(n)
implies [q u(y)(—=1)(¢n(y —h) = bn(y))/(—h:) dy = fa (u(y + h)—u(y))/h)$a(y) dy >
r/4. Since u is continuous, fo (u(y +h)—u(y))/h)d,(y) dy > (u(x +h)—u(x))/h; as
n - 00, Because u has a local maximum at x, (u(x + h)—u(x))/ h; =0 for suitably small
h;> 0. Thus we may choose n so that [o (u(y +h)—u(y))/h:)dn(y) dy <r/8. This is a
contradiction to r > 0.

If 0> r = max 2 (u, x), then let h; <0 and multiply the integrals by (—1). This also
leads to a contradiction.

Finally we state and prove the main theorem in this sectiori which gives sufficient
conditions for extrema. Let d¥¢ represent the kth order differential at x of ¢.

THEOREM 4. Let u e C(Q}), Q<R" and h eR". If

(i) for all h such that |h|=1 there exist ¢, € T1/,(x) such that as n—>oo
u((dxn)h)10(10),

(i) for all n and for all ¢ € Ty)u(x) there exist m >0 such that u((d2¢)h)=
—m(=m), then x € Q gives a local maximum (minimum) of u.

Proof. Apply Taylor’s theorem to ¢, of Assumption (i) to obtain

1
B+ )= 80 (6) = (i) + 5 (L) + 3

where 6h = (61hy, -+ -, 0,h,)0=6;=1andi=1, - - -, n. Since u is continuous, as n -» ©
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u(@n(x+h)—¢,(x))>u(x —h)—u(x). Thus it suffices to show that u(¢,(x+h)—
®n(x)), n = no, are nonpositive. So consider

1 1 h
u(¢n(X+h)"¢n(x)) Ihlu((dx¢n lhl) 5"'|h|2 ((dx¢n)lhl) E"lhlau((di+oh¢n)|'}—l'|)
First, consider the third term on the right side.

& onton ) ( (~ @), x+ 0 )
s (@2endo)) = 2 ca -2 0nta o
where ¢, are the coefficients of the third order differential. Let ¢y € Cy (S1/(no-1) (X))

such that ¢y =1 on §1,,,(x) and no is to be chosen. Since u is continuous we may choose
no so that for all ¢ >0 n = ne implies

|| 400N 6,05+ 0h) dy —u(a) | w)= D 6aly +0h) dy| <.

Also note

u(—D)*¢n(x+06h))= L u(y)(=2)*¢n(y+6h)dy = L Y()u(y)(—=D)*¢n(y + 6h) dy.

Since @*y is continuous and ¢, € T1/.(x), as n >0, [, ¥(y)(— D)*p.(y +6h) dy =
fo DU (y — 6h) b, (y) dy > D*¢(x — 6h). Thus for all bounded |k|, u((— D)*p,(x + 6h))
is bounded by a constant which is independent of 7 = no. So choose 8 > 0 so that || <8
implies

s @asn )=

where m is from assumption (ii).

Second, consider the middle term on the right side. By assumption (ii)
u((d2p,)|h/h])=—m and so we have

(a4 1) = 8, Sl (@) ) + () + P

Third, for each fixed direction k/|h| choose ¢, as given in assumption (i) so that
u((dipn)h/|h)10 as n->co. Consequently, u(d,(x +h)—d,(x))=(-m/4)|h|*=0 for
n = no.

COROLLARY 1. Let u € C(Q) and Q<R If for all |h|=1 there exist ¢, € T1n(x)
such that

(i) (= @no )+ u(=Gn)h)0 as n 0o,
(i) 10 bess, )4 (Brepes) — U (ussrs)? Z ' > O for all b and either (@) <0(> 0) or
U(Pnx,x,) <0 (>0),
then x gives a local maximum (minimum) of u.

COROLLARY 2. Letu € C(a, b) and Q= (a, b) =R If there exist ¢, € T1,,(x) such
that

(i) u(—¢»)10 asn-oo,

(i) u(pn)=-m<0(=m>0) for all ¢,,
then x gives a local maximum (minimum) of u.

COROLLARY 3. Let uc C(a, b) and Q=(a, b)<R'. If x gives a local maximum
(minimum), then there is a sequence ¢, € T1,,(x) such that

(i) u(=¢n)10 as n->0(0 as n - oo)

(ii) either u(¢n)=0 or u(¢,)0 as n—>o0 (=0 or 10 as n -> ).
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Proof. Theorem 3 gives a sequence ¢, € T1/,(x) such that u(—¢,)10 as n - o,
Suppose of all such sequences u(¢,) is not less than or equal to zero. Then there is a
sequence ¢, such that u(¢%)>0. Either u(¢) has a subsequence greater than some
m >0 or u(é,) has a subsequence that goes to zero. By Theorem 4 the former case
yields that x gives a local minimum which is a contradiction. Note if 4 = constant, 4" =0
and u(¢y) must go to zero.

The next two examples illustrate Corollaries 2 and 1.

Examples. 1. Let Q=R and deﬁne u(x)=x+1 when x=0 and u(x)=-2x+1
when x =0. @(u, 0)=[-2, 1] and Z°(u, 0) =[—0, 0]. Thus we must attempt to apply
Corollary 3. Let y be such that |”, 8,(y) dy =2/3 where 8:(y)=(1/c,) e VA with
c1=[1e77? dy. Also let 8,(y) =nd1(ny) and ¢, (y)=8.(y +(v/n)).

u(—¢Q(Y))=u'(¢n(Y))=j_ ¢n(y)dy—2L é.(y)dy =010 asn->o0.
woion=-w@imn=-| smay+2| sia

—S3,(0) = R M g

C1
as n - 00. Thus the two conditions of Corollary 2 hold and we may conclude that x =0
gives a local maximum of u.
2. Let @=(-1,1)x (-1, 1) =R? and define u(x,, x,) as follows

1—x1—x2, x1,x,=0,
1—x1+x2, x1=Z0=x,,
1+x1+x2, 0=xq, xs,
1+x1—x%x2, x2=Z0=x;.
D%(u, 0)=[—1, 1]when |a|=1and Z*(u, 0) =[—00, 0] when |a| = 2. Therefore we need
to attempt an application of Corollary 1. Let ¢, = 8,(x1, x2) = (n/ c)e (A-Giexdin?)
where ¢, =fqe /07" 1+x3) dxidx;. When |a|=1, u((—9D)¢,)=Du(p,)=

f (9u/3x:)(y)pn(y) dy =010 as n > 00 and s0 Sup yj=1 (U(—Pnx,) i1+ U(—Prr,)h2) =010
as n - o0,

U(Prxyxy) = Usy (—Pnx) = I

-1

u(xy, xz)=

1

0 1 1
[t dndot[ [ Do, dndr,
1 -1 J0

0 1
=2 j j' ¢nx, dX1 de
-1 Y0

1

1
=2 [ 6u(l, 1) =60, x) diz=-2 [ 600, x2)
1 1

=2% <o,

C2
u(¢nx2x2) = _2ﬁ< Oa
C2

1

1 1
_¢nx1 dxl dx2+j j (_1)(_¢nx1) dxl dx2
0 J-1

-1

U(Prxyx,) = Uxy( = bx,) = J’_Ol ,[
1

1 1
=2,[ I ¢nX2 dxl dx2=2j ¢n(19 x2)_¢n(~1, x2) dX2=0.
0 J-1 0
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Thus (s, U (Buxsxs) = (U (Puxx,)” =4(c1/c3)>0 and u(@nx,x,) = —2(c1/c2) <0 and
therefore we may conclude that (0, 0) gives a local maximum for u.

5. A maximum principle. In this section we consider the differential equation
Lu=(pu') +gu'+qu=f where p, g Lo(a, b), 0<m =p(x) for all xe(a, b), q=Q’,
f=F'"with Q, F € Ly(a, b). Recall that qu is defined as the derivative of Q(x)u(x)—
(> Q(y)u'(y) dy when u € Hy(a, b)={u € Ly(a, b)|u’ € Ly(a, b)}= C([a, b]).

DEFINITION. Let p, g, q, f be as above. u € Hy(a, b) is a weak solution to Lu = f if
and only if for all ¢ € D(a, b)=C7 (a, b)(Lu)(y) =f(¥) i.e.

b
J [pMu' (=) +g(y)u(y)(y)+Qy)u(y)(=¢'(y))— Qy)u'(y)y(y)] dy
b

= [ Fo)=won ay.

We prove the strong maximum principle as defined below for the above operator L
when Q€ Lw(a, b). This generalizes the classical strong maximum principle when
ueC%a,b),p,p', g qec C(a, b). The proof of the classical version may be found in M.
Protter and H. Weinberger [7]. The proofs of this section closely follow those given for
the classical results in [7] once, as in the previous section, the operation of differen-
tiation has been transposed from 2'(a, b) > 9'(a, b) to D(a, b) > D(a, b).

A weak maximum principle as defined below for elliptic operators of more than
one variable when Q € L,,(Q)) with Q =R" has been proved in G. Stampacchia [10]. At
the end of this section examples are given that illustrate the importance of the
assumptions on g. In particular, in one variable Q must be in Lo(a, b) in order that the
strong maximum principle holds.

DEFINITION.  Strong  maximum principle. If Lu=f, for all xe
(a, )P°(q, x) = [-, 0], D°(f, x) = [0, ], and u # constant, then sup,c(a.s) {0, u(y)}>
u(x) for all x € (a, b).

DEFINITION. Weak maximum principle. If Lu =f, for all x € 02°(g, x) =[~0, 0],
2°(f, x) =[0, 0], and u # constant, then sup,c(a.s) {0, #(y)} = max {u(a), u(b)}.

The maximum principle has applications to the question of uniqueness for the
linear problem and to certain nonlinear problems. In particular, one often wishes to use
fixed point theorems which involve self maps or perhaps to use monotone methods in
order to obtain existence or construction of solutions to nonlinear problems. For
examples of both, consult Courant and Hilbert volume two [5], or, in the case of
monotone methods, see [4] or [11].

The next theorem is perhaps the simplest maximum principle. In the classical case
it is trivial. In all that follows L will be as above with the additional restriction that
Q € Lu(a, b) and @' (p, x) =[-K, 0], K <0, Vx € (a, b).

THEOREM 5. If u € Hi(a, b), 2°(q, x) =[—0, 0] for all x € (a, b) and P°(Lu, x)<
[m(x), o] where m(x)>0 for all x € (a, b), then u cannot have a nonnegative maximum
in the interior of [a, b].

Proof. Since u'e€ L,(a, b), then by Holder’s inequality u € C[a, b]. Thus u has a
maximum which is attained at some x €[a, b]. Assume x € (a, b). By Corollary 3 of
Theorem 4 there exists ¢, € Ty,,(x) such that as n > 00, u(—¢,)10 and u(¢»)=0 or
u(@mlo0.

Note we may assume g = 0. This follows from D°(—qu, x) = [0, o] when 0 = u(x) =
SUP.p) U, U is continuous at x and D°(g, x)=[-, 0]. Hence D°(Lu—qu, x)<
[m(x), c0]. For the moment, let p and g be continuous at x and consider Lu(¢,) =
pu'(—¢1)+ gu(e,). By a proof similar to property 7 of Theorem 1 and p(x) >0, there
exists N; >0 such that when n = Ny, pu'(—¢,) = m(x)/8. By property 8 of Theorem 1,
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gu'(é,)~ 0 and thus there exist N, > 0 such that when n = N, gu'(¢,) = m(x)/8. Thus,
when n Zmax {N;, N,}, Lu(¢,) = m(x)/4. This is a contradiction and so x =a or x = b.

If p or g are not continuous at x, since u is a weak solution pu'+|; gu'=
F +constant. Thus p(x+)u'(x+)—p(x—)u'(x—) = F(x+)—F(x—). Since @°(Lu, x)<
[m(x), ] and m(x)>0, F(x+)—F(x—)>0. Since u(x)=sup.s 4, u'(x+)=0 and
u'(x—)=0. Since p >0, this yields a contradiction.

The main theorem of this section will now be stated and proved by contradicting
the above theorem.

THEOREM 6. Let u € Hy(a, b) be a solution of Lu =f. If 2°(f, x) <[0, 0] for all
x€(a, b), 2°(q, x)=[~, 0] for all x € (a, b) and u assumes a nonnegative maximum,
M, at c € (a, b), then u=M.

Proof. By the remarks in the second paragraph of the proof of the previous
theorem, it suffices to demonstrate this theorem when g = 0.

As in the classical case we define z(x)=e** " —1 on (a1, d) where u(d) <u(c)
and ¢ € (a1, d). We shall find « > 0so that Lz (¢) = m(x) > 0 where m(x) is to be defined
and ¢eT.(x). Since D'(p,x)c[-K,©] and pkx)=m;>0, pz'(—¢')=
(P)a® e (@)= (p(M)(@ e 7¢)) = (m/2)a” e** ™ —2Ka e**", for suit-
able £ >0. Since g € Lo(a, b), |g(y)|=K;<o0. Thus gz'(¢)=—2K a e**" for suit-
able ¢ >0. Consequently, Lz(¢)=(m1/2)a’ e**7) _2Ka e** ™ —2K,a e** 7 for
suitable ¢ > 0. Therefore, we may choose a large enough so that 2°(Lz, x) = [m(x), ]
where m(x)=a ¢**"[(m1/2)a —2K —2K,]>0.

Let 0<y<(M—u(d))/z(d) and consider u+vyz. Since @°(Lu,x)<[0, ],
P°(L(u+vyz),x)=D°(Lu+vyLz, x) < D°(Lu, x)+ D°(yLz, x) <[ym, 0] for all xe
(a1, d). Thus we may apply Theorem 5 to u++yz on (ai, d). Note (u+vyz)(d)=
u(d)+yz(d)<u(d)+ (M —u(d))/z(d))z(d)=M and u(c)+ yz(c) = M. Thus max (u +
vz)=M = (u +vyz)(c) and consequently the maximum of u + yz on[a;, d]is attained in
the interior of [a;, d]. This is a contradiction and so u(d) = u(c).

Remark. The restrictions of Q € Lo(a, b) and 2 (p, x) =[—K, o] were needed in
order to construct z such that 2°(Lz, x) < [m(x), 0] with m(x)> 0. If we consider the
example given by Lz=(2—H(x—0))z') and let ¢, be an even delta sequence
about x =0, then we obtain Lz (¢, ) =—2z'(0)¢,(0) > —oo as n -» co unless z'(0) = 0. Thus
we are not able to construct z such that 2°(Lz, x) = [m(x), 0] for m(x) >0 and for all
x€(a, b).

COROLLARY 1. Let u € Hi(a, b) be a solution of Lu = f. If °(f, x) =[0, 0] for all
x €(a, b), 2°(q, x) =[~0, 0] forallx € (a, b), u(a) =0 and u(b) <0, then either u(x) <0
forx€(a, b) oru=0.

Proof. If u#0, then by Theorem 6 u cannot have a nonnegative maximum in the
interior of [a, b]. Since the maximum must be at the boundary, u(a) =0 and u(b)=0,
then u(x)=M =0. If u(x)=0 for x € (a, b), then by Theorem 6 u=0. Thus either
u(x)<O0 for x € (a, b) or u=0.

COROLLARY 2. Let u € Hi(a, b) be a solution of Lu = f, u(a) and u(b) given. The
solution is unique when 2°(q, x) =[— 0, 0] for all x € (a, b).

COROLLARY 3. Let u € Hy(a, b) be a solution of Lu = f, u(a) and u(b) given. If
u(x)=0 for all x € (a, b), u(a) and u(b)=N, @O(q, x)<[—o0, 0] for all x € (a, b) and
@O(f—qN, x)<[0, ] for all x € (a, b), then 0=u(x)=N for all x € (a, b). An added
constraint on f on D°(f, x) = [—0, 0] implies that u(x) = 0.

Proof. Consider u—N. L(u—N)=f—gN. Apply Corollary 1 with u replaced by
u—N and f replaced by f —gN to conclude that u(x)— N =0 for all x € (a, b). In order
to show that 2°(f, x) = [—oo, 0] implies u(x) =0, apply Corollary 1 with u replaced by
—u and f replaced by —f.
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We finally give the examples which illustrate the importance of the assumptions
on q.

Example 1. 9°(q, x) =[—0, 0] is a necessary restriction. Lu =u"+u, u(-7w)=0=
u(w) is the simplest example. Consider the differential equation u”"+26u =0, u(—-1) =
0= u(1) on the interval [— 1, 1]. In this case g = + 28 and QZO(q, x)< [0, 00]if x # 0 and
QDO(q, 0) =[0, c0]. Let u(0) be any constant and define

+u(0)x+u(0), —-1=x=0,

u(x)={—u(0)x+u(0), 0=x=1.

This is a family of solutions to the given equation which depends on the choice of u(0).
Thus the solution to the equation u"+268u = f, u(—1) and u(1) given is not unique. See
Fig. 1 for the graph of u.

Example 2. This example illustrates Q € L,(—1, 1)\Lo(—1, 1) such that the weak
maximum principle holds but the strong maximum principle does not hold. Let
Lu=u"-1/9x"*?u, Q=1/3x""? and u=2-x*>—(1-|x|)¥>. Then Lu=f=
2/9(1—|x)*?+1/9x7*3(x**+ (1 —|x|)*’?) and so 2°(f, x) <[0, ] for all x € (-1, 1)
and 2°(f, 0) = {c0}. The graph of u is given in Fig. 2 which clearly shows the desired
result.

Example 3. At the beginning of these sections we mentioned that G. Stampacchia
had proved a weak maximum principle for elliptic operators in more than one variable
with u € H(Q) and Q€ L,(). One reason why this may not in general work for
Q = (a, b) is that the product qu is not defined when Q € L,(a, b). One must then place
further restrictions on Q or u. This example illustrates u € L,(a, b) and u'€ L(a, b),
such that neither maximum principle holds for a Qe L,(a, b)\L»(a, b). Let Lu=
u"—=3x|7°"%u, Q=3|x|"*? and u=1-|x|"?. Then Lu=f=3x|*> and so 2°(f, x)<
[0, o] for all x e (—1, 1). Note that —%x >"?u may be defined as the derivative of an
element of L,(a, b). The graph of u is given in Fig. 3 which shows that neither maximum
principle holds.
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THE ZEROS OF THE ODD AND EVEN PARTS
OF A HURWITZ POLYNOMIAL*

AARON FIALKOWT

Abstract. This paper is a study of some properties of the zero distributions of Hurwitz polynomials and
also of polynomials H,(x) of the form H,(x)=x"F(x)+ G(x), where F(x), G(x) are independent of r. In
particular, it is proved that if a sequence of strict Hurwitz polynomials Q,(z) satisfies Q,(z)Q,(—z) = H,(x),
x = —z>, then an increasing number of the zeros of both the odd part and even part of Q,(z) become arbitrarily
small and arbitrarily great as r - 00. This theorem has application in network theory as the guarantor of the
validity of a new synthesis method for realizing quite general filters by means of a transformerless, inductance,
capacitance ladder network terminated in resistance (LC-R ladders). A special case of the theorem has been

used to validate a method of even part synthesis of an arbitrary impedance by means of at most four LC-R
ladder networks.

1. Introduction. The importance of electric filter networks in the solution of many
engineering problems is well known. As a result, there is a considerable literature
concerned with the theory and design of filter networks. The actual realization of a
preassigned filter function is generally by means of a lossless ladder network terminated
in the resistance which represents the load. For arbitrary distributions of passbands and
stopbands, this ladder realization frequently requires the unavoidable use of trans-
formers.

A recent investigation [2] has studied the impedance of transformerless,
inductance, capacitance two-ports terminated in resistance (LC-R networks). This
analysis led to a synthesis criterion and algorithm for a wide class of impedances. Their
realization is in the form of an LC-R ladder having considerable element economy
relative to the degree of the impedance.

Based on this synthesis procedure, quite general filter functions may be realized
without resort to transformers, provided the filter function has either a reflection zero or
an attenuation pole at the origin. A statement of this and similar results appears in [3].
The principal theorem may be paraphrased as follows: Any real rational function having
only pure imaginary poles is the characteristic function of a filter which is realizable as an
LC-R ladder, provided that the function has a zero or pole at the origin of sufficiently high
order. While the actual synthesis depends upon the methods developed in [2], the
guarantee that the procedure must be successful also rests upon some purely mathema-
tical results which are the subject of the present paper.

These results are concerned with the distribution of the zeros of certain poly-
nomials, the distribution of the zeros of their odd and even parts, and their formal
structure. Theorem 1 describes the zero distribution of polynomials of the form
x'F(x)+ G(x), with polynomials F(x), G(x) independent of r, for large values of r. The
second theorem and its corollaries finds conditions on the zero distribution of a
sequence of Hurwitz polynomials Q,(z) sufficient to guarantee that a preassigned
number of the (real) x zeros, (x = —z2) of the odd and even parts of Q,(z) be less than (or
greater than) a preassigned magnitude. All of these developments culminate in
Theorem 3 which is required for the filter application described above. This theorem
states that the conclusion of Theorem 2 is true if Q,(z)Q,(—z)=x"F(x)+ G(x), with r
sufficiently great.

* Received by the editors November 16, 1978.
t Department of Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201.
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2. Thezeros of x"F (x) + G(x). The required performance specifications of a filter
dictate the choice of a characteristic function. The characteristic function of a filter is a
real rational function S(z)/T(z). It is well known [4, (12, 14)], that a strict Hurwitz
polynomial Q(z) exists such that

(1 Q(2)Q(—z)=8(z)S(-2)+ T(2)T(-2).

Based on [2], the realization of this filter by a transformerless ladder’ requires that
the characteristic function have a zero or pole at z =0 and further depends upon a
guarantee that enough zeros of the odd and even parts of Q(z) are sufficiently small (or
great). There is no obvious, direct relationship between this last condition and the
corresponding structure of the characteristic function. A principal goal of the
subsequent mathematical analysis is to establish such a connection.

Suppose that the polynomials S(z), T(z) are prescribed, except for an arbitrary
factor z" in one of them. Then (1) takes the form

Q(2)Q(-2)=xF(x)+G(x), x=-27,

where F(x) and G(x) are independent of r. In this section, we investigate the zeros of
this polynomial in x. The subsequent sections relate the location of these x zeros to the
zeros of the odd and even parts of Q(z).

THEOREM 1. Let F(x), G(x), with F(0)G(0) # 0, be relatively prime polynomials of
degree ry and r, respectively, and

(2) H,(x)=x"F(x)+ G(x).
Let ® be any angle of the complex x-plane, with vertex at the origin, defined by

T

0= =60+, <
3) D:0=argx=0+¢ 103 17 min (o ra)

Then, fore, 0 < e <1, and every positive integer c, an integer ro(e, c) exists such that for all
r = ro, H,(x) has at least c zeros which lie within the ring, 1 —e =|x| = 1+ ¢, but outside the
angle ®.

Proof. We first prove a number of lemmas.

LEMMA 1. LetG(x)=(x —a)“Gi(x), G1(a) # 0 and |a| < 1. Also let Cg be the circle
|x —a| = R, where R is any positive number for which Cg lies inside the unit circle |x| =1,
and contains no zeros of F(x)G1(x). Then, for all sufficiently great r, H,(x) has exactly u
zeros within the circle Crg.

Proof. Since F(x), G(x) are relatively prime, F(a)# 0. Consequently, for all
sufficiently small R, Cg lies in |x| =1 and no zeros of F(x)G;(x) lie in or on Cg. Then
G1(x)/(F(x)) is analytic in and on Cr and not zero there. Applying the maximum
modulus theorem to its reciprocal, we conclude that G;(x)/(F(x)) assumes its minimum
modulus K on the boundary of Cg. Consequently, on the boundary,

G(x) Gi(x)
F(x) F(x)

Cr

- R*=KR".

Cr

Also,

|x"|cx = (la|+ R)".

! For any ladder, the zeros of T'(z) must all be pure imaginary [1; p. 184]. This fact plays no role in this
paper.
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Since |a|+ R <1, it follows that for all sufficiently great r,
KR“>(la|+R)".

It follows from Rouché’s theorem that G(x)/(F(x)) and G(x)/(F(x))+x" have the
same number of zeros in Cg; that is, H,(x) has exactly u zeros which approach x = a as
r->o0. 0O

LEMMA 2. LetF(x)=(x —b) Fy(x), F1(b) #0 and |b|> 1. Also let Cg' be the circle
|x —b|=R’', where R' is any positive number for which Cg' lies outside the unit circle
|x|=1 and contains no zeros of Fi(x)G(x). Then, for all sufficiently great r, H,(x) has
exactly v zeros within the circle Cg..

Proof. For sufficiently greatr, r +r; — r, > 0. We assume this is so. Then by means of
the transformation, y = 1/x, from (2) we obtain

' r+r, 1 r' o~ '
4) Hy(y)=y™ *Hr(;> =y G'(y)+F'(y),
where r'=r+r;—r,, and F'(y), G'(y) are polynomials in y are defined by

Fi=yE(3),  60)=y6(1).
y y
Clearly F'(0)G'(0) # 0. Also, since neither 0 nor co is a zero of H,(x)F (x)G(x), the zeros
of H, (y), F'(y), G'(y) are also bifinite and the reciprocals of the zeros of H,(x), F(x),
G(x) respectively. In particular, the factor (x —b)” of F(x) corresponds to the factor
(by —1)° of F'(y). Also, (4) has the same structure as (2). Hence Lemma 1 may be
applied to H',(y) with (by —1)°, F'(y) occupying the roles of (x —a)", G(x) respectively.
When the result is translated from y to x variables, we obtain Lemma 2. [

LEMMA 3. Let the a;, of multiplicity u;, be those zeros of G(x) for which |a;| <1 and
let the b;, of multiplicity v;, be the zeros of F(x) for which |bj|> 1. Let&,0<¢ <1, be such
that the circular regions

Cu:|x—ai|=e, Gy lx—bjl=e
and the ring
R:1l—e=x|=1+¢

are all disjoint. Then p, >0 exists such that for all r > pq, u; zeros of H,(x) are in Cg, v;

zeros of H,(x) are in Cy, for each a,, b, and all the remaining zeros of H,(x) are in .
Proof. According to Lemma 1 and Lemma 2, p' > 0 exists so that for r > p' exactly

u; zeros of H,(x) are in each C,, and exactly v; zeros are in each C,, and De[H,(x)] =

r+ry. Let x1(r) be one of the remaining zeros of H,(x). If possible, contrary to Lemma 3,
let

(5) lx1(|=K,<1

for an increasing sequence & of values of r. Now a constant B >0 exists so that
|F(x1)| < B for all x; which lie in the region defined by (5), since a continuous function
has bounded modulus on a closed bounded region. Hence

(6) |x1F(x1)| <BK1.

Since, by hypothesis, x1(r), with r>p’, is outside each C,, a constant K >0 exists so
that, for all r >p'

@ |G[x1(r)]|> K.
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From (2), (6), (7), for r belonging to & and also r > p",
0=|H,(x1)|Z|G(x1)| = |x1F(x1)|> K —BK >0.

This contradiction proves that (5) cannot be true for r >max (p’, p”). The assumption
|x1(r)]= K,>1 may be disproved for values of r>p" by similar analysis of the zero
y1=1/x; of H,(y), given by (4). Hence all these remaining zeros x(r) of H,(x)
eventually enter and remain within R for all r > p,, where p; =max (p’, p”, p”). 0O

LEMMA 4. Suppose p> = p1 (of Lemma 3) exists such that, for all r > p,, the number
of zeros of H,(x) which are outside an angle ®, defined by

(8) Dp: op=argx =6+ o, ¢<£,

where k is a positive integer, does not exceed a fixed integer po. Then the elementary
symmetric function 2 of order k of the zeros of H,(x), where r > p,, cannot be equal to
zero.

Proof. For r>p1,in accordance with Lemma 3, each of the circles C,, C,, contains
a fixed number of zeros of H,(x), while the remaining zeros are in . Let p; of the zeros
of H,(x) be in those C,,, C,, which have points in common with ®o. Further let ¥, be the
intersection of ®, and &. Therefore, if n and p are the number of zeros of H,(x) which
are respective points of ¥; and its complement,

9) P =po+pi, n=r+ri—p,

since De[H,(x)]=r+r;.

An elementary symmetric function of order 4 of some variables is the sum of all
possible products, without repetition, of 4 of these variables. Denote the elementary
function of order s of the p zeros of H,(x) outside ¥; by 2}, and the corresponding
function of the n zeros inside ¥, by 2. Since, by Lemma 3, all the zeros of H,(x), for all
r, lie in a closed bounded region, and the number of them which enter X}, is bounded by

(9) for all r, the [2}] are each bounded, independent of r. Thus there exists a number
B >1 so that, for all r,

[ZH<B, h=1,2,---,p,

(10)
Zo=1, 3, =0, h>p.

Let x; be one of the remaining n zeros of H,(x) given by
(11) xj=rjeiof, 1"8§r]‘§1+8, 00§0j§00+¢.
If
— 0 )
X(h) = T(n) €
is a typical product in 2%, from (11),
(12) (1-¢) ' =rm=(1+e)",
13) h0o = 6= hbo+ ho.

Hence each product term is a point in the intersection ¥, of the ring &, defined by (12),
and the angle ®,, defined by (13). In view of (8), the vertex opening of ®,, is less than 7 if
h = k. The average or centroid X, of all these product terms x;, lies within the convex
hull of ¥, and cannot be zero if 4 = k. Consequently, from (12) and (13),

(14) (1-¢)" cos%’sgmﬂg(ns)h, 1=h=k,
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where, since h¢/2 < /2, all quantities are positive. The total number of x(,) equals

n\ nn-1)---(n—h+1)
(n)=

h h!
and X} is the sum of all these x(). Therefore
In= (Z)f(h)
and, from (14),
(15) (%)(1—6)" cos%‘ééliﬁl§<z>(1+g)h, 0=h=k

(The inequalities for 4 =0 are a consequence of Yo=1).
Now the elementary symmetric function 2, of all the zeros of H,(x) obeys

k k—1
(16) Se= L (SA)=3{+ T (@i,

From (10) and (15),

k-1
Y (ShZk-w
h=0

k—1 n h
<th=:o(h>(l+€) s
(17 5

]Eﬁlz(D(l—e)k cos —;

Now lim,, .« ()/(3) = 0 if h < k. Also, (9) implies that n - o0 iff r > 0. Finally, from (8),

h¢/2<m/2forh=0,1,2,- -, k.Consequently, a constant p, = p; exists so that, for all
r >P2,

k—1
IZk>| X (k- Zk-n)
h=0
after using (17). But, from (16) and this equation,

DI E

k-1
Y (ErZk-n)
h=0

>0. a

We now complete the proof of Theorem 1. According to Lemma 3, if r > p,, a fixed
number of the zeros of H,(x) lie within the circles C,, Cy, while all the remaining zeros
are in R. Now the coefficients of a polynomial are multiples of the elementary
symmetric functions of its zeros. For H,(x), since the term involving xis missing if
r>r,+1, it follows that 2,1, = 0 for all sufficiently great r. Then Lemma 4 proves that
as r > 00, the number of zeros of H,(x) inside # but outside any angle

Q. 0=argx =0+, 1<

>

1+I'1

cannot remain bounded.

In a similar manner, if we proceed with H} (y), defined by (4), we find that as
r' - 0o, the number of y zeros of H (y) inside the ring &' (which is the transform of 2 by
y =1/x) but outside any angle in the y plane

D 0=argy =0+, $2<

1 +I’2,
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cannot remain bounded. If this result is restated in terms of x quantities, it is identical
with the conclusion of the preceding paragraph, except that ¢, is replaced by ¢,. The
results concerning ®; and ®, taken together are equivalent to the conclusion of
Theorem 1. 0O

3. Hurwitz polynomials with zeros in prescribed regions. Let Q,(z),r=
1,2,3,---, be a sequence of strict Hurwitz polynomials. By definition of Q,(z), its
zeros lie in the interior of the left half plane. In this section, we show that if m, of the
zeros of Q,(z), with m, > 00 as r > 00, are further restricted to certain subregions of the
left half plane, then an increasing number of the zeros of the even and odd parts of Q,(z)
tend to 0 and oo as r > c0.

THEOREM 2. Let V' be the sector of the z plane

(18) V' |z| =Ry, Ry>0; T—6o=argz =m+ 0o, 0§00<7—T.

2
Let Q,(z), r=1,2,3,: -+, be an infinite sequence of real, strict Hurwitz polynomials
written as
(19) Q.(2)=f,(x)+2g(x), x=-z2°

Suppose Q,(z) has m, zeros in V' and that

(20) }1210 m, = 00,
Let positive constant xo and positive integer ¢ be prescribed. Then a constant ro(xo, ¢) exists
such that, for all r > ro, f.(x) and g,(x) each have at least c zeros x; such that 0 <x; < xo.
Proof. As z = iw varies along the i-axis from 0 to co, the corresponding x, obeying
x = w?, varies on the real axis from 0 to 0. From (19), it follows that Q,(iw) is pure
imaginary at a zero of f,(w %) and is real at a zero of g,(w?). Thus the angle ¢[Q,(iw)] of
the complex number Q, (iw) is an odd or even multiple of 7/2 if and only if w is a zero of
f(x) or g,(x) respectively. Consequently, we study the function ¢[Q,(iw)].
Write Q,(z) in factored form as

Q.(z)=K[l(z+c) - Tl (z+R;e™)(z+R;e™"),
h j

where K, ci, R; are real positive numbers and 0< 6; < /2. The angle function ¢
satisfies the equation

21 6[Q.(iw)]=Y ¢(iw+cr)+Y [¢piw + R;e™®) + ¢ (iw + R; e %)].
h i
If we write
w w + R, sin 6; o —R; sin 6;
22 t =, t . =—4’ t = ] ],
(22) an vy, o an 3j1 R, cos 6, an Bj» R, cos 6,

then (21) becomes

(23) ¢[Q:(iw)] =§ Yo +2 (Bi1+ Bj2)-
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Also define ao, ; by

24) tan ap = Rio’ tan a; = l%

Then, using (22) and (24),

(25) tan (Bj1+Bj2) = M =cos 0; - tan 2a;.
, -w’

As the real variable w increases from 0 to oo, each y, and each «; increase
monotonically from 0 to /2, while the 6; are constants in the range 0 < 6; < 7/2. Thus,
using (25), (Bj1 + B,2) increases monotonically with w, varying from an initial value O to a
final value 7. Consequently, ¢[Q,(iw)]is a monotonically increasing function of w, with
each of the angles, y., (Bj1+ B;2), in (23) making a positive contribution to the total.

According to the hypothesis of the theorem, m, of the zeros of Q,(z) lie in the

sector ¥'. Let m, of these zeros be negative real and m, be pairs of conjugate complex
zeros, with

(26) m,+2m! =m,.

For each of the m | negative real zeros, ¢, = Ro. Then, from (22) and (24), yx = ao. Also,
for each of the m pairs of complex zeros, R; = R, and 6; = 6,. Consequently, from (24),
a; Z ap and cos 6; =cos 6. Then

. o
tan 2a; =tan 2a0>0 fao=—, «a;=

-7
4 s
T

. w w
0>tan2a,~§tan2a0 1fa0>z, ‘5>C¥,’>Z,

- T - wT . o
tan ' [cos 6o tan 2ap]== and tan ' [cos @ tan 2a]>— if ao_ LES a; >

2 2 4 2

Hence, in all cases, for any of these m, pairs of zeros, we find, after reference to (25),
that

Bj1+ B2 = tan"" [cos 6, tan 2a,).
Then, from (23),

27) 6O, (iw)]=mlao+m! tan~" [cos 6o tan 2a,).

Since ao, 8, are constant, independent of r, it follows from (20), (26) and (27) that, for
any real positive w,

lim $[Q,(iw)] = o,
This equation implies that if wo= xo/?, a constant ro exists such that, for r>ro,
¢[Q,(iwo)]1> car. Then the discussion in the first paragraph of the proof shows that f,(x)
and g,(x) each have at least ¢ zeros which obey 0<x <xo. 0

COROLLARY 1. Let the sequence of strict Hurwitz polynomials Q,(z), defined by
(19), have m, zeros in the sector exterior V" defined by

1
(28)  V:lzlznn  Re>0;  w-foSargz=m+os, 0§eo<g,
0
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where m, obeys (20). Then a constant r, exists such that for all r > ro, f,(x) and g.(x) each
have at least ¢ zeros x; with xi > xo, for arbitrary choices of xo>0 and positive integer c.

Proof. We consider the effect of the transformation w = 1/z. Suppose De[Q,(z)] =
n. Since Q,(z) has no zeros at z =0 or z = 00, the zeros of the polynomial

1
Q:-(W) = anr(_)
w
are the reciprocals of the zeros of Q,(z). Also
QW) =f)+wg'(y), y=-w’
where
w21 , n— 1
fy)=y /zf(—), g'(y)=y 2Vzg(—>,
y y
if n is even and
n— 1 , e 1
fiy)=y" ””g(;>, g'y)=y" ”/2}”(;),

if n is odd. Furthermore the transformation maps ¥"(z) onto ¥'(w), defined by (18). It
follows that Q,(w) satisfies the hypothesis of Theorem 2. Consequently, for any
positive 1/x0, ¢, at least ¢ zeros y, of f;(y) and of g;(y) obey y.<1/xo. The
corresponding zeros x; of f,(x) and g,(x) equal 1/y, and so satisfy x;, >x,. 0
COROLLARY 2. Let ¥V, be the intersection of a ring and an angle given by

(29) \P0I0<R1§|Z|§R2<w; 77—~00§arg2§77+00, 0§90<7§T
Let Q.(2),r=1,2,3, - -, be strict Hurwitz polynomials (19), with m, zeros in the ring

section Vo, where m, obeys (20). Let constant xo, 0<xo<1, and positive integer c be
prescribed. Then a constant rq exists such that, for all r > ry, f,(x) and g,(x) each have at
least c zeros x; so that 0 <x; <xo and each have at least c zeros xi so that x; >1/xo.
Proof. The ringsection W, lies in the sector ¥’ with circular boundary |z| = R,, and
also lies in the sector exterior ¥ with circular boundary |z| = R,. Consequently both
these regions have at least m, zeros of Z,(z), with m, obeying (20). This means that the
hypotheses of both Theorem 2 and Corollary 1 are satisfied. Thus positive constants 7’
and r” exist so that for r >r' and r > r", the respective conclusions of the theorem and the
corollary are true. Then the conclusion of Corollary 2 follows for ro =max (¢, r"). 0

4. Hurwitz polynomials Q,(z) which satisfy Q,(z)Q,(—z)=x"F(x)+G(x), x =
—z2. If the results of §§ 2 and 3 are combined, we can obtain a property of Hurwitz
polynomials having the special structure described by (30) below.

THEOREM 3. Let Q.(z),r=1,2,3,---, be an infinite sequence of real strict
Hurwitz polynomials

Q.(2)=f(x)+2g(x), x=-z
Suppose that
(30 Q.(2)Q,(~z)=H,(x)=x"F(x)+ G(x),

where F (x) and G (x) are relatively prime polynomials, independent of r. Let x0,0 <xo<1
and positive integer ¢ be prescribed. Then a constant ro(xo, ¢) exists such that for all



HURWITZ POLYNOMIAL 81

r>ro, f(x) and g.(x) each have at least ¢ zeros x; so that 0 <x; <x,, and each have at
least ¢ zeros x; so that x; > 1/ x,.

Proof. The proof depends upon using Theorem 1 to place an increasing number of
zeros of H,(x) in a suitable ring segment, and then Corollary 2 to obtain information
concerning the zeros of f,(x) and g,(x). If F(x) contains a power of x as a factor, this
factor may be absorbed into x". Hence we may assume, without loss of generality, that
F(0)#0. Also G(0) # 0, else Q,(0) =0, which is impossible since Q,(z) is strict Hurwitz.
These results and (30) prove that the hypothesis of Theorem 1 is satisfied.

Before applying this theorem, we consider the relevant regions of the x plane and
the z plane. Choose @ to be the angle of opening ¢ satisfying (3) which is positioned so
that it is bisected by the positive x-axis. Under the map, x = —z7, ® corresponds to two
vertical angles of opening ¢/2 in the z plane which are each bisected by the imaginary
axis. The region outside these angles in the left half z plane satisfies

31) m—60p=argz =mw + 6, 00=g-?
Since, from (3), 0 < ¢ <, it follows that 77/4 < 6, < 7r/2. Also corresponding to the ring
R:1-e=|x|=1+e, 0<e<],

is another ring
R':V1-e=|z|=V1+e.

As a consequence of Theorem 1, the number of zeros of H,(x) which lie outside ®
but inside & increases beyond all bounds as r - 0. Consequently, the number of zeros
of Q,(z) which lie within the intersection ¥, of the angle (31) and the ring R' is
unbounded as r- 0. We identify ¥, with the region defined by (29). Then the
hypothesis of Corollary 2 is satisfied. Hence, after choosing the x, and ¢ of Corollary 2,
a constant r, exists so that, for all r > ro, f,(x) and g,(x) each have at least ¢ zeros x; with
0 < x; <xo and each have at least ¢ zeros x; with x, >1/xo. 0O

We note that if F = G =1, then the Q,(z) are the Butterworth polynomials. In this
case, Theorem 3 specializes to Theorem 20 of [2]. This theorem is used in [2] to devise

an even part synthesis of a general impedance, using at most four LC-R ladder
networks.
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PROPERTIES AND APPLICATIONS OF THE RESOLVENT OPERATOR
TO A VOLTERRA INTEGRAL EQUATION IN HILBERT SPACE*

T. KIFFEt AND M. STECHERY
Abstract. This paper discusses the existence, uniqueness, and asymptotic properties of solutions to the

equation u +a*Au = f, where A is a positive self-adjoint operator on a Hilbert space. These properties are

studied via the resolvent operator for this equation. The authors also consider a nonlinear perturbation of the
above.

1. Introduction. In this paper we will discuss existence and uniqueness of solutions
for the equations,

t

(1.1) u(t)+J' at—s)Au(s)ds=f(t), O=t=T,
0
(1.2) u(n)+ I a(t—s)Aus) ds+ j a(t—3)Bu(s) ds > f(1),
0 0

where A is a positive self-adjoint linear operator densely defined on a Hilbert space H,
B is a possibly multiple valued maximal monotone operator, and a(t) is a real valued
function. We will also give some results concerning the asymptotic behavior of the
solutions to (1.1).

Clément and Nobel [4] have recently considered (1.1) and established existence
and uniqueness results under various hypotheses on the forcing term f(t). Their
technique is essentially that of constructing a resolvent operator for (1.1), and by use of
its properties, deducing that (1.1) has solutions for various f’s. Using a different analysis
of the resolvent operator we have been able to extend their existence results in the case
where X is a Hilbert space and A is self-adjoint, and also derive some asymptotic
properties of the solutions.

Friedman and Shinbrot [6] have also considered existence, uniqueness, and the
asymptotic behavior of solutions to (1.1). Their approach is to analyze the resolvent
operator of (1.1) using Laplace transforms, while Clément and Nohel’s and our’s is to
analyze the associated scalar resolvents. For related results on linear Volterra equations
we refer the interested reader to [9], [14].

Equation (1.2) written as

(1.3) () + L a(t—)g(u(s)) ds > f(),

where g is an accretive operator has been studied by various authors [1], [2], [5], [7],
[13]. All of the above papers basically require that f(¢) be differentiable. Viewing (1.3)
as a nonlinear perturbation of (1.1) and using some of our results for (1.1) we have been
able to extend the existence results for (1.3) to include some nondifferentiable forcing
terms.

Section 2 of this paper contains the statements of the results for (1.1), while their
proofs are in § 3. Equation (1.2) is discussed in § 4. Examples which illustrate our results
are worked out in § 5.

* Received by the editors February 22, 1978 and in revised form January 19, 1979.
T Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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Throughout this paper we will use the following notation:

(1.4)

H denotes a real Hilbert space with inner product (-, -) and norm |-,
LP[0, T; H]={f: [0, T]~> H|f is strongly measurable and [, |f(¢)|” dt <
o}, 1=P<co,

L™[0, T; H]={f: [0, T]-> H|f is strongly measurable and

ess Supo= =7l f(1)] < 0},

((+,+)) and || - || will denote the inner product and norm respectively on
L’[0, T; H],

B(H) is the space of bounded linear operations from H to H equipped
with the operator norm topology,

A denotes a positive, linear, self-adjoint operator from H to H with dense
domain,

{E)}»=0 Will denote the resolution of the identity determined by A,

& will be the usual extension of A from H to L*[0, T; H] and D(«) =
{ueL?[0, T; HllAue L*[0, T; H]}.

For the standard results concerning the resolution of the identity we refer the reader to

[16].

2. The linear equation. The standard approach to solving (1.1) has been to first
consider solutions of the resolvent scalar equations

(2.1)

(2.2)

t

r(t,)\)+)¢J a(t—7)r(r,A)dr=al(t), 0=¢t=T
0

2

t

s(t,/\)+)¢J. a(t—7)s(r,A)dr=1, 0=¢=T.
0

If we define resolvent operators R(¢) and S(¢) by

(2.3)

2.4)

0

R(r)=j 14, A) dE,

0

()= Lm s(t,A) dEx,

then the solution of (1.1) can be written in the form

(2.5)
or

(2.6)

u(t)=f() - L R(t—T1)Af(r) dr

u(t)=S()f(0)+ L S(t—7)f'(r)dr

under various hypotheses of f and f' [4]. We begin by stating various properties of the
resolvent functions which will be used in studying (1.1).

Throughout we will assume that a(¢) is a real-valued function defined for 0 <t < oo
satisfying

2.7

a € C(0, ), a € Li,.(0, ), a(t)is positive and nonincreasing

and log a(t)is convex.
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LEMMA 1. Suppose (2.7) is satisfied and let r(t, A) and s(t, ) denote the solutions of
(2.1) and (2.2) respectively. Then

i) r(t,A)=0,s(t,A)=0 forA=0andt>0,
(i) suprzoA*r(tA)=Coa (g a(r) dr1™* for 0=a =1, 0<t, where C, is a
constant depending only on a,
(iii) suprzoA *r(f, A) € L [0, ) for 0=a <1,
Sup zoA “r(t,A)>0ast> for 0<a =1, and
suprzor(t, A\)>0ast—>0 ifa(t)->0 ast - o,
(iv) s(t,A)=[1+A [ga(r)dr]™" fort=0,A1=0.

We remark that in (iii) if @ = 1, then sup,zoAr(s, A) € L'(0, &) for any 8 > 0. The proof of
Lemma 1 is based on an inequality due to Gripenberg [8, Thm. 1]. The properties of the
operators R(z) and S(¢) are contained in the next two lemmas.

LEMMA 2. Suppose (1.4) and (2.7) are satisfied and let R(t) be defined by (2.3).
Then

(v) A*R(#t)eB(H) for0=sa=1,0<t<00,
(vi) A®R(t)€ Lioc[0,00; B(H)] for 0=a<1 and if aeL'(0,) then
j§° A°R(s)ds = aA*[I+aA] ™" wherea = j§° a(s) ds,
(vii) for each x € H, AR(t)x is a continuous function of t for 0=a =1 and
0<t<oo,
(viii) A*R(t)~ 0 ast—> o in the operator norm topology on B(H) for 0<a =1 and
R(t)x » a(c0)Eox as t > © for each x € H, where a(t) > a(©) as t > o0,
(ix) ifin addition to (2.7) we assume thata(t)>0 ast—-> 0, then R(t)>0ast > ©
in the operator norm topology on B(H),
(x) if in addition to (1.4) and (2.7) we assume that o(A) < [Ao, ©) for some
Ao>0, then also R(t)—> 0 as t > 0.

Regarding (vi) it is not known if AR (¢)€ Li,.[0, ©0; B(H)] under hypotheses (1.4) and
(2.7). In (viii) the projection E, can be characterized as the projection of H onto the
kernel of A if zero is an eigenvalue of A and as the zero projection if zero is not an
eigenvalue cf. [16, p. 319]; and in (x), 0 (A) denotes the spectrum of A.
LeEMMA 3. Suppose (1.4) and (2.7) are satisfied and let S(t) be defined by (2.4). Then
(xi) S(t)e B(H) for 0<t <0 and S(t) is a continuous function of t in the operator
norm topology on B(H),
(xii) S@)->[I+aA] " as t->00 in the operator norm topology on B(H) ife
L'(0,0) and a =y a(s) ds; and S(t)> E, if ag¢ L' (0, ).

Our next result is concerned with the existence and uniqueness of solutions to (1.1).

THEOREM 1. Suppose (1.4) and (2.7) are satisfied and let f, A***f € L*[0, T'; H] for
some 0<a =1 and 1 =P =c0. Then the function u(t) defined by (2.5) satisfies u(t) €
D(A) a.e.0=t=T; u(t), Au(t)e L*[0, T;H, and u(t) satisfies (1.1). Moreover u(t) is
the unique function having these properties.

We remark that f, A'**feL7[0, T; H] implies that Afe L*[0, T; H] since A
being self-adjoint implies |Ax|* = |x|*+]A"*x|* for x e D(A'**). Theorem 1 provides
the existence and uniqueness of a strong solution to (1.1). We can define a weak solution
u(t) of (1.1) as follows.

DEFINITION 1. A function u(t) is a weak solution of (1.1) if there exist sequences
{u.(0)}, {f.(2)} where each f, € L*[0, T; H] and each u,(¢) is a strong solution of (1.1)
with f replaced by f, such that f, > f and u, > u in LP[0, T; H] as n > .

It will be clear from the proof of Theorem 1 that (1.1) has a unique weak solution if
f, A°fe L7[0, T; H] for some o, 0<a =1.
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Clément and Nohel [4] have considered (1.1) in a Banach space X with the
assumption that A generates a strongly continuous contraction semi-group. They
proved existence and uniqueness of a strong solution to (1.1) if f, Af, A’fe L*[0, T; X]
and a weak solution if f, Afe L”[0, T; X]. Our Theorem 1 extends their results by
relaxing the restrictions on f at the expense of assuming that X is a Hilbert space and A
is self-adjoint. They also have shown the existence and uniqueness of a weak solution
u(t) to (1.1) if fe W*'[0, T; X]. Under our restrictions on X and A their represen-
tation for the weak solution becomes (2.6) when S(t) is given by (2.4). We will use this
representation for weak solutions when we consider the asymptotic behavior of
solutions to (1.1).

One of the purposes of this paper is to study the nonlinear equation (1.2). Our
proof of existence and uniqueness of solutions to (1.2) rests heavily on the properties of
maximal monotone operators in a Hilbert space and on the properties of solutions to
(1.1). For this reason we have considered (1.1) in a Hilbert space setting. Theorem 1 has
a significant extension if p =2, and this extension, which was proved in [12], is stated
below:

THEOREM 2. Suppose a(t) is of positive type, i.e., a € Lio.[0, ) and Re 4(s)=0 for
Re s =0 where d(s) = |y e “a(t) dt. Then

(xiii) iff, Afe L*[0, T; H], (1.1) has a unique strong solution u(t)e L*[0, T; H],

(xiv) iffeL*[0, T; H], (1.1) has a unique weak solution u(t) € L*[0, T; H] satis-

fying

t

2.8) u(t)+A(j

a(t—s)u(s) ds) =f(t) ae0=t=T.
0

We refer the reader to [15] for properties of functions of positive type. If a(¢)
satisfies (2.7) it is well known that a(¢) is of positive type so Theorem 2 handles more
general kernels than Theorem 1. Also it should be noted that kernels of the form
a(t)=e " cos (yt) are of positive type for b = 0 but do not satisfy hypothesis H, of [4].

Theorem 3 below summarizes the asymptotic properties of weak solutions to (1.1).

THEOREM 3. Let (1.4) and (2.7) be satisfied and suppose u(t) is a weak solution of
(1.1):

(xv) ifaeL'(0,0), (A*f)(t)~>x as t > and either fe L°[0,00; H] or A*fe
L™[0, c0; H] for some a, 0<a =1, then fO)—u@)»>aA' *[I+aA] 'x,
as t—> 00, where a = |, a(s) ds,

(xvi) if a(0)<oo, AfeL'[0,00; H] and either A*fe L'[0, c; H] for some a,
0=a<1oro(A)=[Ag, ©) for some Lo>0, then u(t)—f(t)~>0 as t > oo,
(xvii) if a(0)<oo, a(t)>0 ast—>o0 and Af € L'[0, 00; H] then u(t)—f(t)~> 0 as
t-> 00,
(xviii) if A*feL™[0,00;H] for some 0<a =1 and aeL'(0,), or if A%fe
L*[0, c0; HINL'[0, c0; H] then u—f e L[0, c; H],
(xix) if fe Wi [0, 00; H] and f'€ L'[0, ©; H] then u(t)-> Eof(®) as t-> oo if
ag L' (0, 00) and u(t) >[I +aA] 'f(c0) ast > oif a € L' (0, o) where f(t) >
f(o0) as t > 0.
We remark that in the second part of (xviii) it is not assumed that a € L'(0, o).

Friedman and Shinbrot [6] have also considered the existence and asymptotic
behavior of solutions to (1.1) in a Banach space setting. Their approach consisted of
using Laplace transforms to study (1.1). Our hypotheses on the kernel function are
quite different from theirs and we need not assume that A is invertible.
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3. Proofs.

Proof of Lemma 1. Part (i) is contained in Proposition 1 of [4]. To prove (ii) we first
note that if r(¢, A) is defined by (2.1) then Ar(z, A) is the resolvent function associated
with the kernel Aa(t). Hence [8; Thm. 1] gives us the inequality

t -1
3.1 O</\r(t,)t)§)ta(t)|:1+)tj a(s)dsJ , 0<t<oo, 0<A <o0.
0

Hence we have, for 0=a =1,
t -1
(3.2) 0<A“r(t,A)ga(z)[f“ul"“j a(s)ds] .
0
Fixing ¢ and @ and maximizing the right side of (3.2) we get (ii). Combining (2.7) and (ii)
we easily establish (iii). To prove (iv) we first note that
t

(3.3) s(t,A)=1—Aj r(r, A) dr.

0

By [8, Thm. 1] we have, recalling that Ar(¢, A) is the resolvent of Aa(¢), for 0 <t <o

t

(3.4) A L r(r,A) dT%A[J:a(T) df][1 A Jota(r) dr]“l.

Combining (3.3) and (3.4) we get (iv). This completes the proof of Lemma 1. The
remark following Lemma 1 follows from the observation that (3.4) implies

t
1 éj [ sup  Ar(r, A)] dr foranyt>0.
4] AZ=0

Proof of Lemma 2. From well-known results from the theory of self-adjoint
operators in a Hilbert space we have

00

(3.5) A“R(t)=J A°r(t, A) dE,, 0<t<oo, 0=a=1.
0

Hence (v) follows directly from (ii) and we have
t -
(3.6) IIA“R(t)Ilécaa(t)[J a(s) ds] .
0
Hence the first part of (vi) follows from (3.6). If a € L'(0, ) then

J:o r(tA)dt= [J:O a(s) ds][l +A J:o a(s) ds]—1

and for each x € H we have

J AR(t)x dt= J J A°r(t, A) dE\x dt = J J A°r(t, A) dt dE\x
0 0 "0 0

0

00 - O
aa i w A
= L Tran dE,x = aA*[I +aA] 'x.
The change in the order of integration is justified by (ii) and Fubini’s theorem. This
proves the second part of (vi). Since r(¢, A) is a continuous function of ¢ for each A =0,
(vii) follows from (ii) and Lebesgue’s dominated convergence theorem. The first part of
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(viii) follows from (3.6). By (3.1)

a(co), ifaA=0,

ast—> oo,
0, ifA>0,

r(t,/\)—>{

so by (ii) and Lebesgue’s theorem we get the second part of (viii). Again (ix) follows
from (ii) when a(t) > Q as ¢ -» c0. To prove (x) we note that (3.2) implies

t -1
3.7) supr(t,)\)éa(t)[1+)\oj a(s)ds] , 0<t<oo,

Ao=A

which immediately implies (x) since now R(¢) = j’:‘; r(t, A) dE,.
Proof of Lemma 3. By (iv) we have that

(3.8) 0=s(t,A)=1, 0=t<00, 0=A<o0.

This establishes the first part of (xi). For the second part we have by (3.3) that if #; <¢,
then

73
G2 Is(tz,A)—s(tl,A)léI Ar(r,A) dr
t
and hence
73
(3.10) sup ls(t2, )=t VIS [ [ sup_ar(e, ) ar
0=A<00 ty 0=A<o

By (ii) we have supo=j<woAr(t, A) € L'(8, ) for any & > 0. Since s(z, A) is a continuous
function of ¢ for each A =0, the second part of (xi) follows from (3.10). To prove (xii) we
note that by (iv), if a(¢) € L'(0, ) then

1 ifA=0,

(3.11) s(”“”{o ifA>0, B2

and if a(f) e L'(0, ), then it is well-known that
(3.12) s(t,A)>[1+ar]™" ast>00, 0=A <oo.

By (3.10) we have that the resolvent operator S(¢) converges in the operator norm
topology on B(H ) as t » oo and (3.11), (3.12), and Lebesgue’s theorem now imply (xii).

Proof of Theorem 1. We wish to show that u(¢) defined by (2.5) is a solution to (1.1)
if f and A'*°f are both in L*[0, T; H], 1 =p = 0. That u will then lie in L*[0, T; H]
follows from (2.8), (vi) and the remark following Theorem 1. We first establish that u (¢)
is contained in the domain of A a.e. Hence we show that R*Af is in the domain of A.
The calculations below are easily justified by the functional calculus for self-adjoint
operators and (vi):

A(R*Af)=A ItR(t—s)Af(s) ds=A"" j'A“R(t—s)Af(s) ds
(3.13) ° °
=A'"" j R(t—$)A"f(s) ds = j A R(t—5)Af(s) ds.

1+a 1+a

Thus since A" *R*A""°f exists and A is a closed operator we must have R+Afe D(A)
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a.e. To see that (2.5) is actually a solution to (1.1) it suffices to show,
(3.14) a*(RxAf) = axf— Rxf.

This formula is first shown to hold for f(¢) =x and then for

0, O=t=c,
x, t>c.

f(t)=

That it holds for such f’s follows easily from the functional calculus and (2.1). Linearity
and continuity then imply (3.14) for arbitrary f. The uniqueness of these solutions has
been established in [4].

The existence of weak solutions to (1.1) under the hypotheses that f and Afe
LF[0, T; H], 1 = p = o, now follows easily from the fact that D(A®) is dense in D(A®)
if a > B, (2.5), and (v).

Proof of Theorem 3. To prove (xv) with A°fe L™[0,00; H] we observe that
aeL'(0,0) implies A'*R(r)eL'[0,c0; B(H)] by (ii) and since f(t)—u(r)=
fo A'"“R(t—5)A°f(s) ds the result follows immediately. If f € L*[0, co; H], then we
can write

JtAl““R (t—s)A°f(s) ds— J—°° AR (s)x ds
0 0

t/2

t/2
(3.15) =J'O AR(t—s)f(s)ds~J0 A" *R(t—s)x ds

+ Jt A'R(1—s)[A%f(s)—x] ds + J~°° A" *R(s)x ds.
t/2 t

Since AR(s)e L'[1, ©; B(H)] by (ii) the result follows from (3.15). To prove (xvi) with
A%feL'[0,0; H] we note that a(0)<oco implies R(f)e L*[0, c; B(H)] and since
A" R()»>0 as t>o by (viii), (xvi) follows from observing that ]'(', ARt -
$)Af(s) ds =g > A" R(t—s)Af(s) ds+];, R(t—s)Af(s) ds. TIf o(A)<[Ao,0) for
some Ao>0 then Af e L'[0, c0; H]implies A%f € L'[0, c0; H]. To prove (xvii) we note
that a(0) <o and a(t)~> 0 as ¢t > oo imply that R(¢t)e L*[0, c; B(H)] and R(¢)~> 0 as
t » o0 by (ix). By (2.5) the result follows.

The first part of (xviii) follows directly from the fact that a € L'(0, ) implies
A'"*R(s)e L'[0, c0; B(H)]. To prove the second part of (xviii) we note that u(¢) — f(¢)
is clearly bounded for ¢ =2. For ¢ >2, write

(616) f0-u=|

0
The first term on the right side of (3.16) is bounded since A' " *R(s)e L™[1, co; B(H)]
by (ii) and the second term is bounded by (vi).

To prove (xix) we observe that by [4, Remark 2.3], (1.1) has a unique weak solution
given by (2.6). By (xii) we have

t—1 t

A R(1—5)A%f(s) ds + j AR (1 —5)A°f(s) ds.

(3.17) limu (£) = S(c0)£(0) + S(c0) J £(r) dr.
t—>00 0

Hence u(t) > S(c0)f(©0) as t >0 where S(t)-> S(0) as t—->00. By (xii) ()= E, if
agL'(0,0) and S(c0)=[I+dA]™" if aeL'(0,). This completes the proof of
Theorem 3.
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4. A nonlinear perturbation. Equation (1.3) has been studied by several authors.
Their results have been of two types; either f € W0, T; H] and one can differentiate
(1.3) cf. [1], [2], [5], [7], [13], or the nonlinear term g must satisfy either a local
boundedness condition [10], or a linear growth condition [11]. By viewing (1.3) as a
nonlinear perturbation of (1.1) the present authors have been able to extend the known
existence results. Throughout the rest of this section we will assume that B is a possibly
multiple valued maximal monotone operator which satisfies

4.1) lyl=cilx|+c2,  yeBx

J, will denote (I +AB)™", and B, will denote the Yosida approximate of B, i.e.,

B, =A"'[I—1J,], cf. [3]. Our next result provides for the existence and uniqueness of
solutions to (1.2).

THEOREM 4. Suppose a(t) is locally absolutely continuous on [0, ), a'(¢) is of local
bounded variation on [0, ©), a(0) > 0, and a(t) is of positive type. Let B satisfy (4.1), and
let A satisfy (1.4). If f = f1+f, where fi€ D(s{) and f,€ W*?[0, T; H], f2(0) =0, then
equation (1.2) has a unique solution. That is there esists a unique pair of functions u(t),
w(t) such that

u, we L’[0, T; H],
4.2) u(t)e D(A) ae., Aucl’0,T;H], w(t)eBu() ae.,

() + Lt a(t—s)Auls) ds +j a(t—s)w(s) ds = £(t).

Proof. Let u, be the unique solution to the following equation,
(4.3) U\ +a*Au,\ + a*BAu,\ =f.

That (4.3) has a unique solution u, € D(«) follows from [12, Thm. 2] since B, is
Lipschitz continuous.

Our next step is to show that the u, are uniformly bounded in L?[0, T; H]. To this
end multiply (4.3) by u, and integrate from 0 to 8 where 8 satisfies cy||al|.1j0,5;< 3. This
gives us

||u,\||2L2[0,5] =((f, wm)+ ||a*BAuA||||uA||

(4.4) _

= [ Al +llallz1o.sfcillunll+ c2vV/8Hunll.
Thus
4.5) [l ll210.61= 2[| fll 200, 71+ 202\/?”0”L‘[0,T1’

from which we may infer that not only are the norms of u, uniformly bounded in
L?[0, 8; H]but also in L0, T; H ]since 6 depends only on a(¢) and ¢, and not on the
nonhomogeneous term in (4.3). By picking subsequences of subsequences, if necessary,
we may assume the following

4.6) ur—u, a*uy—a*u, Aa*u,—Aa*u, Buu,—w, a*Bu,—a*w.

Note that the graph of & is closed with respect to weak-weak convergence and once the
u, are uniformly bounded in L*[0, T'; H]so are the B,u, by (4.1) and |B,x| =|y| for any
y € Bx. Clearly u(¢) and w(¢) satisfy

4.7) u+Aa*u+a*w=f.

We now need to show that w(t) € Bu(t) a.e. and u € D(&f). We will first show that
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w(t) € Bu(t) a.e. Rewrite (4.3) with 7 instead of A, subtract the two equations, and then
multiply by Au, — Au, + Byu, —B,u, and integrate. Since a(¢) is of positive type we get
(4.8) ((ur = tny Aup — Auy)) + ((ur — Uy, Batty — Bru,)) =0,

from which we infer by the positivity of A

(4.9) ((u)\ — Un, B,\u)‘ —B,,u,,)) = O,

and this in turn gives us
(4.10) lim (1, Byir)) = (u, w)).

Since B,u, is bounded and equals (1/A)(I —J,)u, we see that u,—Jyu,->0 in
L*[0, T; H), and since ByJ,u, € BJu, we conclude from (4.10) and [3, Prop. 2.5] that
w(t) € Bu(t) a.e. To see that u € D (/) we denote the map u -» u + Aa*u by (I + sfv) and
note that (I +&fv)™" exists as a bounded operator on L*[0, T; H], [12]. Moreover

(I +<fv)™" maps our f into D(&£). Thus multiplying (4.7) by (I +sfv)~" we see that u
satisfies

4.11) u=~UT+s) =T +sv) (a*w).

Moreover a*w e W0, T; H), a*w(0) =0, and (I + «»)" takes such functions into
D(sf). This establishes the existence part of the theorem. Uniqueness is proven as in
[13].

We remark next that a simple asymptotic result is obtained if the kernel function
a(t) and the nonlinear term B satisfy

(4.12) cillallLro,ey <1, c2=0.
If this is true, then (4.3) gives

1
1-cillallz 0.«

from which we may conclude that u € L?[0, c0; H] and satisfies (4.13) also.

(4.13) leall L2(0,00:11y = | Al2c0,00:15

5. Examples.
Example 1.Let H = L*[0, 7], A¢ = —d>¢/dx’ for ¢ € H[0, ] and ¢ satisfies the
Neumann boundary conditions, that is d¢/dx € H [0, 7). Hence we may write ¢ as

5.1 o(x)= § ¢, cos nx,
n=0

where Yo1 n'|é.? <. Leta(t)=e " thena = f;o e “dt=1/c. Now suppose f(x, t) €
L*[(0, w)x (0, T)] and A*f(-, ) L[0, T; H] and that

(5.2) lim A°f(-, 1) = (x) = 21 U cOS .
Then, if u(x, t) is the solution to (1.1), we have from (xv) that
lim £+, )= u(-, 1) =%A1’°‘(I+%A)—l¢
(5.3) o 20

5 Y, COS NX.
n=1 C+n
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We remark that the operator A does not have an inverse as is needed in the theory
developed in [6].

To illustrate Theorem 4 we give the following example.

Example 2. Let H = L*(Q), where Q is a bounded open subset of R” with smooth
boundary. Let A = —A, with D(A)=H*(Q)NH{(Q). Let a(t) =cos t. Let

1, ¢(x)>0,
B¢(x)=sgn ¢(x)=<[-1,1], &(x)=0,
-1, é(x)<0.

Then B satisfies (4.1). Let f(¢) = h(¢)y where h: [0, T]- L*[0, T]and ¢ € D(A). Then
by Theorem 4 there exist functions ¥ and w such that

t

5.4) u(t)— I cos (¢t —s)Au(s) ds + J‘cos (t—s)w(s) ds =h(t)y,
(1]

0

and w(t) e Bu(t) a.e.
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ASYMPTOTIC EXPANSION OF THE HILBERT TRANSFORM*

R. WONG
Abstract. Asymptotic expansions are obtained for the Hilbert transform

L[ 0,

Tl l—X

Hi(x)= t (x real),

where the bar indicates that the integral is a Cauchy principal value at ¢ = x. The function f(t) is locally
integrable in (—00, c0), continuously differentiable there except possibly at the origin, and decays algebraically
at +00. Explicit expressions are given for the error terms associated with these expansions. From the explicit
expressions, realistic error bounds can be obtained. Two examples are considered to illustrate the use of these
results.

1. Introduction. Let f be a locally integrable function on (—o0, ). The Hilbert
transform of f, when it exists, is defined by
(1.1) Hs(x)= 1 ][ M dt, x € (—00, 00),

Tl lt—X
where the bar indicates that the integral is a Cauchy principal value at ¢ = x. This
transform plays an important role in the theory of Fourier analysis [12], and also in the
study of singular integral equations [8].

For many years, the problem of finding asymptotic expansions of integral trans-
forms has been the subject of intensive study. Among the recent papers dealing with this
problem, we mention those of Jones [4], Handelsman and Lew [3], and Olver [11]. As
far as we are aware, there is no asymptotic result for the Hilbert transform available in
the literature, and it appears to be desirable to obtain such a result: this will be done in
the present paper.

We remark that if x is a complex parameter and Im x >0 (or Im x <0) then the
integral in (1.1) is no longer singular, and it has already been considered by Millar [7].
However, Millar’s approach fails if x is real.

By subdividing the range of integration at the origin, we obtain

(1.2) Hf<x)=-71;{H; () +HF (1)},

where Hy (x) and Hy (x) denote the integrals corresponding to the intervals (—0, 0)
and (0, ), respectively. For definiteness let us restrict x to be positive. In this case,
H (x)is simply the Stieltjes transform of —f(—¢). Asymptotic theory of this transform is
fairly complete; see, for instance, the recent article of McClure and Wong [6]. Thus we
may confine ourselves to the consideration of the one-sided Hilbert transform

(1.3) Hw={ {4
o I—X

Throughout this paper we shall assume that the function f(¢) has an asymptotic
expansion of the form

(1.4) f®)~e“ Y ag™"% ast->o0,
s=0

* Received by the editors September 20, 1978 and in revised form January 11, 1979.

+ University of Manitoba, Department of Mathematics and Astronomy, Winnipeg, Manitoba, Canada
R3T 2N2. This research was supported in part by the National Research Council of Canada under Contract
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where 0 <a =1 and c is a real number.

2. Main results. For 0 <a <1 and c real, we set

ict

2.1) Eoo(x)= ][m

o t%(t—x) a

It can be proved by using contour integration that if ¢ =0 then

2.2) E..(x)= i“ [e ™ T(1 - a)T(a, icx) + ).

Here I'(a, z) is the incomplete gamma function
Na, 2)= J et de (|larg z| <),

whose asymptotic expansion, complete with error bounds, is given in [9, pp. 110-111].
Since E, .(x) = E, -.(x), a similar result holds for ¢ <O0. If ¢ =0 then (2.2) reduces to

© 1 T cot am

(2.3) E.o(x)= ][0 PErP— dt= Pra
Let ¢,(¢t) = f(¢) and define ¢, (t) by

n—1 X
(2.4) fr)y= 20 as e 't + (1)
forn=1,2,3,--:.Put
2.5) 6n(x)=][ P 4 =0,1,2,- ).

o I—

Since ¢, (t) = O(t™"" %) as t > o0, the above Cauchy-principal-value integral exists for
each n = 0. Note that 8o(x) = H; (x).

The following results provide explicit expressions for the error terms associated
with the asymptotic expansions of the Hilbert transform.

THEOREM 1. Let f(t) be a locally integrable function on [0, o) and satisfy (1.4) with
0<a<1. Then foranyn=1

. n—1 as n bs 1
(2.6) Hf(x)=Euc(x) ¥ 5= X 5+ 8a.(x),
s=0X s=1X X
where the coefficients b, are given by
2.7) bo=|
0
Proof. For any n =1, we have
(28) ‘//n(t)zdln—l(t)_an—l eictt—a—n+1,
and
o © n-1
2.9) s.00=[ (0 di+x ][ 40
0 0 t—x

The first integral is simply the coefficient b,. Inserting (2.8) in (2.9) gives
Sn (x) = bn + x[an—l(x) - an—lEa,c (x)]’
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which implies

1 an-1 by 1
= 8(x) = —Eae (¥) 7h=7 + =5 + =57 81 (%)
X X x" x
Repeated application of this identity leads to

1 o) =- ac(x)"zlﬂ+ $ 24 Hp 00,

which is the exact statement of the theorem.

We observe that if @ =1 in (1.4) then the integral E, .(x) diverges. However, the
above analysis can be extended to include this case. We shall separate the discussion
into two cases: (i) ¢ =0 and (ii) ¢ #O0.

THEOREM 2. Let f(t) be a locally integrable function on [0, ) and satisfy (1.4) with
a=1and c=0. Then for x >1 and foranyn=1

1\ "' a, LR |
(2.10) Hi0=(n2) T - 3 Se <o),
x/) s=0 X s=1X° X
where the coefficients cs are given by
1 <)
(2.11) cs=j £ 1 () dt+j £y (1) d.
0 1

Proof. For any n =1, we write
1 n © _n
5.0x) = J c/rn(t)d ][ t://n(t)

From (2.4), with « =1 and ¢ =0, we have

Il "4 (1) dt= J;l nma(0) dt—a,_,In (x ; 1)

o I—X t—x

1 1 _,n-1
=I " () dt+xI L—w'ﬁdt—an_lln (x 1).
0 o t X

(2.12)

-Xx
Similar argument gives

1" (1)

1 t—Xx

00 0 ,n—1
dt=j " () dt+xj t—d'"(t)dt
1 1 t—Xx
(2.13)

o © n—1
J t”"‘z//n(t)dt+xf ﬂdﬁan_,ln(x—n.
1 1

Coupling the results (2.12) and (2.13) together, we obtain

8n(x)=cn+an-1In x +x8,-1(x),
which is equivalent to

1 n — 1
= 8a(1) =2 4 (Inx) 222+ 1 8,1 ().
X X X X

Repeated application of this identity yields

L sax)=(nx) z S+ i & HE ().
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This completes the proof of the theorem.
For the case in which ¢ # 0 and a = 1, we need the identity

o ict
(2.14) ]( ¢ _dt=ie™  (c>0),
o I—X
see[1, p. 251]. A similar result holds for ¢ < 0. For convenience, we shall also introduce
the notation

(2.15) E.(x)=ie"* + Ey(—ic),

where E;(z) denotes the exponential integral [9, pp. 40-42]. Note that the second term
on the right is simply a constant.

THEOREM 3. Let f(t) be a locally integrable function on [0, o) and satisfy (1.4) with
a=1andc#0. Then forany n =1

Cs

. n—1 < n 1
(2.16) Hi(n)=Ec(x) L <~ L 5+ 58.(0),

s=1
where c; is given in (2.11).
Since the proof of this result is very similar to that of Theorem 2, we omit it
completely.
Remark. There seem to be two other approaches to the above problem, which are
entirely different from the one given above. One approach is to use the Plemelj formula
[5] to write

=3 im] (e )

Hit) =z lm ) e Trex )0
The integrals on the right-hand side are Stieltjes transforms of f(¢) and hence one may
use the results already developed in [6]. The disadvantage in this approach is that one
meets a formidable difficulty in estimating the error term 8, (x). (A simple method is
given in the next section.) Another approach is to view H; (x) as a repeated Fourier
transform and apply the results available for this transformation. However, in this
approach, there arises the question whether asymptotic expansions of Fourier trans-
form can be differentiated (see Condition (ii) in [10]): bear in mind that f(¢) decays only
algebraically.

3. Bounds for 8,(x). To show that the expansions obtained in § 2 are indeed
asymptotic in nature, one must prove that

(3.1) S.(x)=0(1) asx-o0,
We shall, in fact, prove that there exists a positive constant M,, such that

1
(3.2) |8,.(x>|§Mn§—’f

for all x >e.

THEOREM 4. Let f(t) be alocally integrable function on [0, 00) and satisfy (1.4). If, in
addition, f € C'(0, ) and the asymptotic expansion of f'(t) is obtained by differentiating
(1.4), then the function 8, (x) given in (2.5) satisfies (3.2).

Proof. Write

(3.3) 8n(x) = 8,1(x) +8,2(x) + 8,3(x),

where the integrals 8,1, 8,2, 8,3 correspond respectively to the intervals (0, x — 1),
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(x—1,x+1), (x+1, 00). Put
1

(3.4) M= [ (ol ds
0

(3.5) M, > =sup {t*""|¢, (1) : 1 = 1}.

Under the hypotheses, both numbers M, ; and M,,, are finite. To estimate 8,1(x) we
further divide the range of integration at ¢ = 1. It is easy to see that

1
o) P dt.

Mn x—1
S B S|
x—1 1

In the last integral we make a change of variables ¢t = xu. The resulting integral is
dominated by
1 (x—=1)/x 1
— I du,
1

x“ i u(l-u)

which is in its turn dominated by 2 In (x —1). Therefore

In x
(36) |5n,1(x)| = 2(Mn,l +Mn,2) 7-
The integral 8, 3(x) can be estimated similarly. Here we have

® 1

1
On =M, J ——du.
1 ,3(x)| P 2 e +0)u u

In the interval (x ', 1), we use the bound (1 +u) * =1, whereas in the interval (1, o),
we use (1+u)"*=u"“ Thus

1 In x
(3.7) 8,501 = (1) Moo .
a x
We now turn to the consideration of 8, 5(x). Let ¢, (¢t) = t",(¢) and write
x+1 _ x+1
(3.8) puat) = [ EZE 4 [ gy a
x—1 - x—1

where ¢ is between ¢ and x. By hypotheses, as t >0, , () =O( ""*) and ¢, () =
O@ "™ ). Put

3.9) M, 3=sup {""*|y, ()]t =1}.
Then we have
lon (D= (nM, 2+ M, 3)t™"
for all £ = 1. (Note that M, 3 is finite). It now follows from (3.8) that

3\ In x
(3.10) 812NS(3) (Mot M) =

Combination of this result together with (3.6) and (3.7) gives the desired conclusion
(3.2).

We remark that the quantities M,, ;, i = 1, 2, 3, were introduced merely to provide a
rough estimate of the constant M, in (3.2). Of course, much better bounds may be
obtained in specific instances.
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4. Examples. Examining the statements in Theorems 1, 2 and 3, one immediately
observes that the major difficulty in applying these results resides in the evaluation of
the integrals in (2.7) and (2.11). In this section, we shall illustrate some techniques by
which one may succeed in calculating these integrals explicitly. For further examples of
this nature, we refer to the paper by Grosjean [2].

Example 1. From the Cauchy-type nature of the integral (1.3), one is tempted to
conjecture that the dominant term of the asymptotic approximation to H; (x) is of the
same order as the function f(x). This conjecture is, however, not true as we shall see in
this example. Let f(¢) = \/t/l +t. As t— 00, we have

@.1) £(r)~ ZO (~1) 2,

Hence, in the notation of §§ 1 and 2, ¢ =0, @ =3 and a, = (- 1)*. Since

="

¢n(t)=;,ﬁ72(1—+t),

the coefficients b, are given by

s * dt 2
by =(-1 —dt=(-1)"m.
D L \/t(1+t)dt 1)

From (2.6) it now follows that

(4.2) Hi(x)=—m él (_x{) + xi 5,(x).

A simple calculation shows that

1 n
Mn,1 =0.44, Mn,2=§, Mn,3=§.
Thus we obtain, from (3.2),
4.3) 16, (x)| =[3.38+1.84n] P
X

The estimate (4.3) is rather crude in comparison with the actual result |5,(x)|=
/(1 + x), which can be obtained from the closed form evaluation H; (x) = 7/(1+x);
see [1, p. 251]. We have chosen this example mainly to illustrate the calculation of the
coeflicients b; and to make the observation that dominant approximation in this case is
O(x™") and not O(x""/?) as one might have expected.

Example 2. Consider the integral

0 —u

4.4) I(x)= ][

du (x>0).
o 1—xu

In terms of the Hilbert transform we have

I(x)=:[0 tié%dt,
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where

-1y .
( )tSI, as t - 00,

O =1e '~ 3

s=0 S!

Thusc =0, a =1 and a, = (—1)%/s!. To calculate the coefficients c,, we note that the first
and the second integrals in (2.11) are, respectively, equal to

© o 1\
[“uetaur’s Y
1

k=0 k!(1+k—s)
and
1 s=2 (_1)k (__l)s 1 ( 1)k 1+k—s
I H S ey — N e+ —]
m | ), u e "du= X k= T G- " Z oK1 +k—3)
Adding these two quantities together gives
) _ _1)s 1 s—2 ( 1)k 1+k—s
= 1-s +( e+ ——]
¢ i‘i‘é[s B o e L kv k=s)

where E,(e) is the generalized exponential integral [9, p. 43]. Using the identity
[9, p. 43]

(=e)" 2 (=)

4.5) Es(s)“( 1)'{ —In e+ (s)}+ Z’ K k=1)’

we have

Cs =Q Y(s).
S!

In (4.5) the prime on the summation signifies that the term k = s — 1 is omitted, and ¢/(s)
denotes the logarithmic derivative of I'(s). It now follows from Theorems 2 and 4 that

(4.6) I(x)~(lnl>§ 1’ §( 1) dz(s)
X

' s+1 |
s=0S s=1 s x

Taking the first two terms in the expansion, we have
1/, 1 1
@.7) 16)=—(In~) -2+ =5,(0)
x\' x/ x x
where v is the Euler constant. A simple calculation gives M;=12.5. Hence

8:00] = (12.5) 2%,
Vx

Similar results can be obtained for higher error terms.

In conclusion, we wish to make the following remark. If the path of integration
(0, o) in (1.3) or (2.5) can be deformed into a ray, arg ¢ = y(y # 0), then the resulting
integral no longer has a singularity at ¢t =x and hence better error bounds may be
obtained; (see the estimates in [6]). However, such deformations presuppose that f(¢) is
the restriction of an analytic function and that the asymptotic expansion (1.4) is valid in
asector. In this paper, we have confined ourselves entirely to the real-variable methods.
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PRODUCT FORMULAS FOR ¢-HAHN POLYNOMIALS*

DENNIS STANTONY

Abstract. Product formulas for general g-Hahn polynomials are derived from counting arguments
involving subspaces of a finite vector space.

1. Introduction. Product formulas for orthogonal polynomials appear most
naturally as first terms of addition theorems. An addition theorem for a family of
q-Hahn polynomials has been found by Dunkl [7]. We shall give a product formula for
general qg-Hahn polynomials which will be the first term of a yet undiscovered addition
theorem for g-Hahn polynomials. The derivation will depend upon the g-Hahn
polynomials being functions on the general linear group over a finite field satisfying
certain invariance properties. This was first discovered by Delsarte [3]. The problem
then is reduced to a combinatorial one involving subspaces of a finite dimensional
vector space. In § 2 we give the elementary properties of g-Hahn polynomials, describe
the geometry leading to the polynomials, and state two combinatorial propositions. The
product theorem for g-Hahn polynomials (Theorem 1) is proved in § 3. Using a
transformation this formula becomes a linearization formula for dual g-Hahn poly-
nomials. Sufficient conditions for the positivity of the coefficients are easily found. We
also give a sharp bound for some g-Hahn polynomials.

2. Preliminaries. First we briefly describe the circumstances leading to product
formulas. All of this material can be found in Dunkl [6].

If X is a finite set let L(X) denote the complex valued functions on X and |X]|
denote the cardinality of X. If f,geL(X), define the inner product (f,g)=
IX|7' Y cex f(x)g(x) with {f, £) = || f|3. Suppose G is a finite group with identity e. For any
subgroup H of G, let Ly(G)={fe L(G)|f(hg)=f(g) for all h € H and g € G}. We can
identify Ly (G)=L(X), if X =H\G ={Hg|ge G}. Let R denote right translation,
(R(g1)f)(g2) =f(g281), f€ L(G), g1, 82€ G. Suppose V = Ly (G)=L(X) is an irreduci-
ble G-module suchthat Vg ={fe V|R(h)f = fforallhe H}and Vkx ={fe VIR(k)f=f
for all k€ K} are 1-dimensional subspaces of V for some subgroup K of G. Let
éun € Vi and ¢uk € Vk be normalized by ||¢ux |3 =|éuxl’ = (dim V)™'. Then the
following product formulas hold for any gi, g, € G;

(2.1) Gur(g1)buu(g2) =H|™! th éru(g1hg2),

(2.2) bux (€)bux (81)bux (g2) = (H|K )™ hZH duk (g1khg»),
keK

(2.3) ¢HK(g1)¢HK(82) = |K|_1 kZK ¢HH(g1kg;1),

(2.4) Gu(81)dux (g2) =H|™ 'EH duk (81hg2)-

* Received by the editors September 20, 1978 and in revised form January 10, 1979.
+ Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. Much of the
material in this paper appears in the author’s thesis under the direction of Richard Askey.
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In this paper we shall explicitly compute the product formulas (2.1)~(2.4) when ¢y
and ¢uk are g-Hahn polynomials.

The g-Hahn polynomials [9] are defined in terms of basic hypergeometric series. If
k is a nonnegative integer, let

—k ~k
a a bl \_ k@ 5aia;a)ibiq);
3¢2( c d\ ,x) i=o (q;q)i(c; q)i(d; q); o

where (a;q);=(1-a)1-aq) - - (1-aq’™"), (a;q)o=1. If k and N are integers,
0=k =N, the kth q-Hahn polynomial is defined by
q; Q>-

This is a polynomial of degree k in A(x)=q *. The orthogonality relation for these
polynomials is [2]

~k k+1 -
abq + x

2.5) Qu(a™; a,b,N; )= s¢5(* o

aq

N
(2.6) Y Q@ *;a,b,N;9)Qi(q™"; a,b, N; @)w(x) = 8hi ',

x=0

where

wix) = (43 @):(ad; q).

@5 )2 /bs q), 2D

= — (@63 Dn-ilag; a)la " )
@™ " ab; @n-k(@"" @ Dilabg" ;@i

The weight function w(x) is positive if 0 <q # 1 and 0 <a, b lie in the same component
of the complement of the closed interval from g~ to ¢ . We shall need a trans-
formation of a terminating 3¢> [2]

—k -k
a* a bl \_(c/a;qk q a d/b|  bq
(2°7) 3¢2( c d q; CI> - (C; q)k ak3¢2< aq—k+1/c d ’q, ¢ )

For g-Hahn polynomials (2.7) implies

(28) Quq @b Nig)==- "

(abg* ™ )Qu(g"*; 67", a N3 q 7Y,

—x (qu; th)x -x, —-N-=1;-1 —-N-1_-1
. ; 3 @) =77 — =1, Qn- ; b, s N3 q).
(2 9) Qk(q ;a, b9N, CI) (l/aq;q l)x QN k(q q q a ‘1)

Finally we mention the dual g¢-Hahn polynomials E.(q *;a,b, N;q)=
Q.(q7%; a, b, N; q), which are polynomials in u(x)=(1—g *)(1+abq**") orthogonal
with respect to A,.

The q-Hahn polynomials Qx(q *;q"*™%, ¢™"7%, n; q) were realized as spherical
functions on GL(v, GF(q)) by Delsarte [3]. We recall the situation. Let E be a vector
space of dimension v over GF(q) with a fixed basis {ej, : - - , e,}. If A is any subset of a
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vector space, we denote by spA the span of A. Let X, 0=2n = v, denote the set of
n-dimensional subspaces of E. In terms of the g-binomial coefficient [1] we have
X, = [v] =(q”;.q")n.
nliq (q > q)n

Fix abase point w, € X,,, w,, =sp {e1, * * * , e,}. Then G = GL(v, q) acts transitively on X,
with isotropy subgroup H, ={g € G|w,g = w,}. The permutation representation of G
on L(X,) is multiplicity free with n+1 irreducible constituents, LX) =Y Vi
The modules V) were first described by Steinberg [10], and their relation to
g-Hahn polynomials is discussed by Dunkl [7]. The spherical functions are the
H, -invariant functions in each V,. They are constant on the H,-orbits on X,
which are Q,,={aeX,|dim(¢aNw,)=n—-x}, 0=x=n. For V, we have [7]

dim Vk:‘[v] —[ v ] and  Suu(g)=Ql@*;q"°',q ", n;q), where
kleg Lk—1l4

n—x =dim (w,g Nw,).

If n=m=v—n, the H,-invariant functions on X, are constant on A,, =
{e e X, |dim (¢ Nw,,) =n—x}, 0=x=n. It is straightforward to verify [7] that the
H,,-invariant elements of Vj are spanned by ¢ux (g)=Q«(@ % q™ ', q ™ ', n;q),
where x = n-dim (w,g N w.,). Henceforth we shall have H = H, and K = H,,..

Before working out the product formulas (2.1)-(2.4), we state two enumerative
propositions involving g-binomial coefficients.

ProPOSITION 1. Let Vn and Wy be N and M-dimensional vector spaces over
GF(q).

(1) The number of pairs of n-dimensional subspaces (V,, W,), V., < Vn, W, € Wiy,

s[l [ l;

(i) For any pair (V,, W,) there are |GL(n, @)= (q; 9)nq?(=)" nonsingular linear
transformations from V,, to W,.
(iii) The number of k-dimensional subspaces Wy = Wy such that W, N W,, = {0} is

M_n kn
[ k ]q"’

(iv) The number of linear transformations g from V,, to Wy such that dim (V,g) =j is
R n k i :
a(n, k,j)= []] [1] (@ 9)a®(-).
q q
PROPOSITION 2. Let t, n, m, I, k, j, and i be integers such that 0=t=n=m,
Osjs=m-n+t,j—t+l—-k=i=j, and max (I-t,0)=k=min(l,n—1t). Let {ey,- - -,
em+:} be a basis for V over GF(q), and let A, be a fixed I-dimensional subspace of sp {e1,

-, e,} such that dim (A;Nsp{es, - -, en—}) = k. Then the number of j-dimensional
subspaces B; of V such that dim (A;+B;)Nsp{ew, ", €n-n€nr1," " " lms) =k +i

—n+t L
and B,'nsp {el’ cee en}={0} is [m jn ] a(]., t_l+k,j_i)q](n t+1 k).
q

Proof. If Bi(sp{ei, - - -, en} ={0}, the projection of B; on sp {e,+1, * -, €m+c}iS a
j-dimensional subspace F,. Fix F; with a basis {fi, -, f}. Then B, is uniquely
determined by {z1, - -, z;}<sp{es, - - -, e,} such that {fi+2z,, -, fi+2z7} is a basis
for B;. Let C,_;. be a fixed (¢ — I +k)-dimensional complement in sp {e,—;+1,* * * , €n}
to the projection of A; on sple,—i+1," **,en}. If dim ((A;+B;)Nsp{es,  *, €n-s
€ni1, ' ', em+i}) =k +i, the projection of sp{zi,- -, z;} on Ci_jsr is (j—i)-dimen-
sional. The projection of sp {zy, - - -, z;}onsp {es, - -, e,—.} + A, is arbitrary. This gives
a(j, t=1+k, j—i)g"™""*"=" possible choices for {zy, -+, z}. 0O
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3. The product formula for qg-Hahn polynomials. In this section we shall explicitly
calculate the product formula (2.2) for g-Hahn polynomials. Forany0=/=n,letg, € G
be defined on the basis {e;, -, e,} by eig=e€ps1-i, 1=Si=Lv—I+1=i=v, eg=e,
I+1=i=v—I, and go=identity. Fix 0=s, t=n and let g, =g, and g, =g, in the
product formula (2.2). In order to evaluate the argument of the g-Hahn polynomial on
the right hand side of (2.2), we need to find dim (w,g:khg; N w,,) = dim (w,gkh N wmg:).
This is the intent of the next two lemmas.

LEMMA 1. Let w, and gs be as above. The number of keK such that

dim (w.gk Nw,)=n—s—a, 0=a=n-s, Iis [ nos ][ " ]IGL(n—s—
n—S—aldqgtn —S —alq

m-—n an m—n+s)(n—s m(v—m
&l " "] 4" GL (@ @)l IGL(m ~n+ 5, )l ™ """ GL(w - m, @lg™* ™.
q

Proof. Clearly w,gs=sp{es+1," ", €n €r—s+1," "', €}, SO that w,Nw,g =
sp{es+1, ', e,}. Since keK fixes w, Dw,, w.gkNw,=sp{ess1, ", e}k Nw,.
Choose (n — s — a)-dimensional subspaces A, _;_, and A, _,_, of sp{es+1,"* -, €.} and

w, respectivelysuchthat A, _; .k = A} _;_, = 0,8k Nw,. By Proposition 1(i)—(ii) there

are [ nes ] [ " ] |GL(n —s —a, q)| possible choices for k. To extend k to
Nn—S—aldgln —§S—aldgqg

sp{es+1,* * *, en}, let B, be a fixed complementof A, _;_, insp {e;+1, * - -, .} and B, be

an a-dimensional subspace of w,, such that w, N B, ={0}. If kK maps B, to B, by

Proposition 1(iii) there are [m—n] q°" possible choices for B, and thus
¢ q

[m - n] q°"|GL(a, q)| possible choices for k. Finally extending k to w,, = w,,k and to E
a q

we obtain from Proposition 1 (ii)—(iii)|GL(m —n +s, q)lg"" """ |GL(v —m, q)| -

(v—=m)m

q possible choices for k. [
Given k€K as in Lemma 1, we now consider w,gkh. Since h fixes w,,
dim (w,gskh Nw,)=n—s—a. This implies that dim (w,gkh Nsp{e1, ", en}) =

n—s—a—p, for some B, 0=n—s—a—B=n—t; and that dim (w,gkh Nw,,.g)=
n—s—a—pB+vyforsome y,0=y=s+a.

LeEMMA 2. If k € K satisfies the hypothesis of Lemma 1, then the number of he H
such that dim (w,gskh Nsp{eis1, *,e.})=n—s—a—B and dim (w,gkh N wmg) =
n—-s—a—B+vyis

[, et -s—a-p o ] 4" IGLB.0)

n—s—a—B —-s—a—B

(s+a)n—s—a) m-—n+ t] [s +a] (n—t+B)(y+6)
. GL(s +a, [ GL(y+6,
q |GL(s +a, q)l v+0 Jdy+o ql (y+6,9)lq
v—m-—t

. +6,t— ,0[
aly B )s+a—y—0

(s+a -'y-—O)(m+t)
]q

IGL(s 30, g s
"|GL(v~n-a-s,q),

where a(y+ 60, t— (3, 6) is given by Proposition 1(iv).
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Proof. From Lemma 1 A, __,=w,gk Nw, and since h fixes w,, w.gskhN
!

splect, s ent=An_ahNsplews, -, en}. Let Chsa-p and Cr—s—a—p be (n—
s —a — B)-dimensional subspaces of A, _,_, and sp{e.+1," - -, e,} respectively. If h

, ; n—t n—s—a
maps Cp—s—o- t0 Cp—s—n—p, there are [n i—a _BL[” Cs—a—B
B, q)| possible choices for h by Proposition 1(i)—(ii). Asin Lemma 1, fix a 8 -dimensional
complement D to C)——o-p in A, _,_,, and let Dj be a B8 -dimensional subspace of w,
such that DgNsp{e1, ,e,}={0}. If h maps Dj to Dg, there are

] |GL(n—s—a—
q

t - . . .. ey pens
[ BLqﬁ ""D|GL(B, q)| possible extensions of h to A!,_,_, by Proposition 1(ii)~(iii).

Extending & to w,, by Proposition 1(ii)-(iii) there are q“**"*"*|GL(s+a, q)|
possible choices for h.
Let Z., cw.gk be a fixed complement to A, ,_,. We shall define A on

tra If dim (wngkh Nwmg)=n—s—a—B+vy, then dim (w,g.kh Nspies, -, em,
€y_111," " ", )=n—s—a—B+y+0 for some §,n—s—a—-B+ys=sn—-s—a—fB+
v+ 60 = n. Choose a (8 + y)-dimensional subspace Fg.., of sp{e1, -, €m, €ors1," " *» €s}

suchthatdim (Fg.y + Cn-s-a-p+D3)Nwmg)=n—s—a—B+yandFy., Nw, ={0}.
By Proposition 2 (j=60+vy,[=n—-s—a,k=n—s—a—-B,i=v, A;=ChL_a-p+Das,
m—n-+t
0+y, t—
0+‘Y ]qa( Y

B, 0)g "B Let Fj,, be a (6+y)-dimensional subspace of Z;., and let h

V=sp{es, ", e€m €1, *,e,}) the number of such Fg.,, is[

+
map Fg., to Fj., There are [;+C;]q|GL(0+y,q)l possible choices for h.

Choose an (s+a —60—y)-dimensional subspace Giiq-¢-4 Of E such that

tra—o-y1sp{e1,* *, €ms €o—rs1, "+, €,}={0}. By Proposition 1(iii) there are
v—m-—t (s+a—y—0)(m+t) ” _a_
[s+a—0~y]q such G{i4-¢-,, and any of the |GL(s+a—6-1v,q)|

transformations from a fixed complement of Fjy., in Z5., to G{4a-g—y Will complete
the definition of 4 on Z .

Extending 4 to E there are ¢ " * V" "**)GL(v —n—a —s, q)| choices. By
collecting terms and summing on § Lemma 2 is established. 0

The g-Hahn polynomials in the product formula (2.2) are normalized

by lcQUB=luxli=(@im vyl Using dimvi=['] [, " ], 1Al
q q

m v—m _ . . . m—v—
[ ] [ ]q("' "+)x and the orthogonality relation (2.6) with a =g !
n—Xlq X a

b=q ™', and N = n, we obtain

I,
F

After changing y to s+a —v— 6 and collecting terms in Lemma 1 and Lemma 2 the
product formula (2.2) can be stated.
THEOREM 1. Let k,s,t,n,m, and v be integers and q be a prime power. If

cC =
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‘Iq(m n)ka(q—s;qm-ﬂJ—-l’ q—m—l’n;q)Qk(q—t;qm—v—l,q—m-—l,n;q)

o
“E e WS,
n—slgls +alq

(4 9ea%(—)°q% Q@ 79" g ns q),

where A=(s+a)2B—t+a—y)+BB—-t)—y(B—y—2t+n—m).

COROLLARY. The product formula (3.1) holds if 0=k, s, t = n are integers, q is any
complex number |q|# 1, and q™ """ and q~ """ are replaced by complex numbers a and b
respectively, a,b#q ,ab#q ", 1=1,2,- -, n.

Proof. Both sides of (3.1) are rational functions of g, a, and b. We have equality for
infinitely many values of g, a, and b; and the stated conditions on ¢, a, and b are
sufficient to avoid the poles. The sums remain finite since s, ¢, and n are integers. 0

Theorem 1 implies product formulas for various limiting cases of g-Hahn poly-
nomials. Its major importance is that it is the first term of an addition formula for
g-Hahn polynomials. For m = n this is a result of Dunkl [7]. As g1 the product
formula for Hahn polynomials is obtained [5], [6].

We could use the positively of the kernel in Theorem 1 for ¢ > 1 and either 0 <a,
b< q”z" ora,b= q_"_', 1=1,2,- -, n,toobtain a bound for the g-Hahn polynomials.
However, a sharp bound can be derived from (2.7) with a =q %, b =abq“*", c =q™",
and d = aq. The result is

(bg™ ;597"
(1/aq;q7");
If0<a, b<q " and ¢ >1 (3.2) implies

(3.3) Q@ ";a,b,n;q)|=max{1,|Qulq ";a,b,n;9)}, x=0,1,---,n,
and thusfor0<a=b<q "andg>1

(3.4) Q@ "5 a,b,n;q)|=1, x=0,1,"-,n.

By using (2.8) and (2.9) the bound (3.3) gives a bound for any of the g-Hahn
polynomials for ¢ > 0. For q = 1, see Dunkl [4] and Gasper [8].

The analytic continuation can be done in another way to obtain a linearization
formula for some dual g-Hahn polynomials. George Gasper has pointed out to the
author that by iterating (2.7) to obtain

Hiss
klab k Ja (nony q_k Clk_v_1 qa’

IR

q
the k-dependence in (3.1) lies entirely in the polynomials. To retain the dual poly-
nomials if m —n =J, s, and ¢ remain nonnegative integers, we can replace ¢™ and q° by

(32)  |Q«(q@ *;a,b,n;q)|= max

0=j=k

»  x=0,1,--+,n,4g>0.

-k k—v—1 n—m-—s

a4 q
q;¢1>=3¢2( o g

q;Q>,
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A and B if A#q', B/A#q“’“, 1=0,1,---,s+j—1. We can replace qk by x if
B/A#q'*',1=0,1,--+,s+j—1. Then (3.1) can be interpreted as a linearization or a
mixed linearization formula for dual 3¢, polynomials with sufficient conditions on A, B,
g, and j to make the coefficients positive.

The product formula (2.1) follows from Theorem 1 with m = n. We now state the
mixed product formulas (2.4) and (2.3).

THEOREM 2. Let k,s,t,n,m, and v be integers and q be a prime power. If
O0=k,s,t=n=m=n-—v, then

Qk(q—s;qn—-v—l,q—n-—l’n;q)ok(q—t;qm—v—l’q—m—-l’n;q)
(3.5) [ ][’][’” ‘_”“L o
3 — Ez] [c;;n]s ° [v ;n t]q[t ya]q[s Yﬂ]q(q;q)y(—)y

1qP¢% Q@™ ;9™ " nsq),
where A=(a+s—B)s+a—t)+B(m+t—n +B8)—s>.

Wi
k q k 4 (m—n)k

e Q@9 g™ n9)Qla 59" a7 s q)
i)

(3.6) [,,fs__ta]q[m _anHLf t

=z, [ m L[v—mL Ls—B]q[v—Z‘_t]q[m—n:t_a]q[s;ﬁ]q

n—s N

(@) (=)a%q* Q@ 79" g  ns q),

where A=(a+s—B)s+a—t)+B(m—n+t+B)—s(m—n+s).

As in (3.1) we can analytically continue q", 4™, q°, and ¢* in (3.5) and transform
(3.6) to obtain a linearization formula for dual polynomials.

Finally we mention a family of g-Krawtchouk polynomials obtained from the
q-Hahn polynomials by letting a > 0, b » o0, and ab = — ¢. For various values of ¢ these
are spherical functions on the other infinite families of Chevalley groups over a finite
field. The analogous geometry and product formulas for these polynomials will be
described in a forthcoming paper.

Acknowledgment. The author would particularly like to thank Professor Dunkl
for access to his preprints.
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A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION
OF LURIE TYPE*

E. N. CHUKWUYt

Abstract. The problem of Lurie is posed for systems described by a functional differential equation of
neutral type. Sufficient conditions are obtained for absolute stability for the controlled system if it is assumed
that the uncontrolled plant equation is uniformly asymptotically stable. Both the direct and indirect control
cases are treated.

1. Introduction. Consider a system of real ordinary differential equations

% = Ax + bf(o),

(1) 4

—‘-g =c"x~rf(o)

in which f: (—00, c0) > (—00, 00) is sectionally continuous with of(c)>0 for o #0,
f(0)=0, A is an n X n matrix, ¢ and b are constant n-vectors and r is a scalar. The
problem of Lurie consists of finding a necessary and sufficient condition for every
solution (o (), x(¢)) of (1) to tend to (0, 0) as > oo whenever it is assumed that the
uncontrolled equation

2) —=Ax

is uniformly asymptotically stable in the large (cf. [1, p. 9]). The entire monograph by
Lefschetz was devoted to this problem. Recently, Somolinos [2] has generalized this
problem of Lurie to functional differential equation of retarded type. In this paper we
shall treat the problem of Lurie when the system is described by functional differential
equation of neutral type. We shall assume that the uncontrolled system is uniformly
asymptotically stable. Utilizing a theorem of Cruz and Hale in [3] which ensures the
existence of a Liapunov functional, we then obtain conditions for the uniform asymp-
totic stability of the feedback system.

2. Notations and preliminary results. Let E” be a real n-dimensional Euclidean
vector space with norm |-|. Let # =0 be a given real number. Let C be the space
C([—h, 0], E") of continuous functions taking [—h, 0] into E" with ||¢||, ¢ € C defined
by ||él|=sup {|¢(8)|: —h =0 =0}. For any continuous function x(8) on ~h=0=1,,
t;>0 and a fixed ¢, 0=t =1, x, denotes the function x,(0)=x(+8), —h =6 =0. Let
D(-): [tg, 0) X C > E" be a continuous function defined by

(3) D(t)¢p =¢(0)—g(t,¢), forteft,0)=1, ¢eC,
where

8: [tO’ KD)XC—)E,!,

* Received by the editors August 18, 1977 and in revised form June 20, 1978. This research was
supported by National Aeronautics and Space Administration under Contract NSG 1445.

t Cleveland State University, Cleveland, Ohio 44115, U.S.A. Now on leave of absence as Reader,
University of Jos, Jos, Nigeria.
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is continuous, g(¢, ¢) is linear in ¢ and is given by

0
@ 8. 6)= | [dut 960,

The function w (¢, s) is an n X n matrix ¢t € I, s e [—h, 0], with elements of bounded
variation in s which satisfy the following condition:

5)

L, [, 51 (s)

=1(0) sup |p(r),
—0=r=0
for all t€ I, ¢ € C, where [ is continuous nondecreasing for 6 € [0, 4], [(0) = 0.
Let A: I XC - E" be continuous and consider the equation

d
Z(D(I)xr) =A(t, x,),
(6) '
Xy = ¢, toel
The following theorem ensures the existence of a Liapunov functional when (6) is
uniformly asymptotically stable.
THEOREM 2.1 [3]. Let D(t) and A(t, ) be bounded linear operators from C into E"
such that for some constant L >0, for all ¢ € C, for all t = t,,

ID(¢|=L|sll

If (6) is uniformly asymptotically stable, then there exist positive constants M,  and a
continuous scalar function V on I X C such that

() ID()¢|=V (1, ¢)=M|s|,
(7 (i) V(i ¢)=—aV(t, ¢),
(i) |V(r, ¢)— V(¢ ¥) =Ko -yl

forallt=to, ¢, e C; V is the usual upper right hand derivate along the solutions of (6).
In Theorem 2.1 it is assumed that D(¢) and A(¢, -) are linear. However, Cruz and
Hale [3] stated a similar result when A(t, @) is not linear in ¢, but g(1, ¢) in (3) satisfies

lg(t, ®)|=Ll#l,  for all =1

We now state the result and point out the required lemma needed to carry out the
proof in [3]. It was communicated to the author by Professor J. K. Hale.

THEOREM 2.2.Let A(t,0)=0, and let A(t, ¢) be uniformly locally Lipschitz in ¢
uniformly with respect to t, with Lipschitz constant N. Let D satisfy locally the condition

ID(¢=Kl¢l,

for all t = ty, for some K.

Assume that the null solution of (6) is uniformly asymptotically stable. Then there
exist a So>0, a M = M(S,) >0, positive definite functions b(u), c(u), on 0=u =S,
and a sealar function V(t, ¢) defined and continuous for t€ I X C, ||¢||=S, such that

@ D)=V 6)=b(lbl)

(b) V(, ¢)=—c(D()¢))

© |V, 1) =V (1, p2)| =M1 — &2
for all t Z 1y, 1, 2€ C, ||ill| = So, i =1, 2. The condition (b) can be replaced by

(b') V(t, ¢)§ “BV(t, ¢)’ B >0.

Remark. The problem with the proof of Theorem 7.2 in [3]is contained in verifying
(c). The following lemma is needed.
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LEMMA (Hale). In (6) assume that D satisfies the conditions of Theorem 2.2. Then
for any ro>0, there is a constant L = L(r) such that

llx:(to, @1) = x:(to, d2)| = ™" p1— 2l
for all t = to, 1, P2 for which
llx (0, p I = ro, llx(to, P2)|| = ro.

Remark. The proof is not as easy as for retarded equations since one cannot apply
the Gronwall inequality directly. One must take small steps in time and make careful
estimates using properties of D(¢).

To prove Theorem 2.2, set

V(t, &) =sup |D(t+5)x.+5(t0, #)] €7,
s=0

and proceed as Hale [4, p. 310]. Our lemma replaces the inequality on page 310, bottom
line.

The first case considered is the indirect control system
d
2 POx) = Al x)+bf(0), 210,

® o()=B(t, x(1) —rf(o),
xto = ¢9 e Ia

in which A is as above, B(¢, y) is a scalar continuous functionin t =0, ye E",and fis a
scalar function which is continuous.

DEeFINITION. The operator D in (3) is uniformly stable if there are constants a >0,
B >0 such that the solution of the “difference equations”

D(t)xt = 09 xto = ¢, D(t0)¢ = 09
satisfies |[x||=B e *“ ||, t=10.

3. Main theorems.
THEQREM 3.1. Assume that in (8) the uncontrolled system (6) is uniformly asymp-
totically stable. Let a and K be as given by Theorem 2.1. Assume that A(t, -) and D(t) are

bounded linear operators from C into E" such that |D(t)¢|=M||¢| for all t = to, ¢ € C.
Assume that:

(i) Laf(s) ds >0, as|o|>o0;

there exists a positive constant ¢ such that
(ii) |B(t, x(6)| = c(D()x.))

for all t € I, where x is continuous;
(iii) for all 8 €[0, h] the relation

K|b| )2
4ar>(c+l_l(0) .

holds where | is defined in (5);
(iv) the operator D is uniformly stable.
Then (8) is uniformly asymptotically stable.
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Proof. Since (6) is uniformly asymptotically stable, there exists a Liapunov
functional for (6) given by Theorem 2.1. Let Vg, denote the derivative of V along the

solutions of (8). Let y = y(fo, ¢), x = x(to, @) be the solutions of (8) and (6) respectively,
then the relations (7) imply that

. . 1
® Vel )= Viels, ¢)+K lim 'l;|y¢+h(t, @)~ xen(t, B).
But then
t+h
D+ M)y —xn)= | bfe) ds,

for any h = 0. Since g satisfies (5) we have that there exists an ho> 0 such that

|y:+h _xt+h| =

t+h
T j \bf (o) ds,

for 0= h = ho. We now use this inequality in (9) to obtain

K
1-1(ho)

(10) Vgt #)= Vi (t, d) + |bf (o).

Hence, by (7(ii))

K

V(S)(t, ¢) =—aV+ 1— l(h())

|bf (o).

Define W = V?/2+ (7 f(s) ds. The derivative of W along the solutions of (8) satisfies

K
1—1(ho)

WS -aV = rlf@)+ V(i |bf(@)) + | 0Bl

By conditions (ii) of Theorem 3.1 and (i) of Theorem 2.1 we obtain from this that
K|b|
1—-1(ho)

The right hand side of (11) is a quadratic form in V and |f(o’)|. It is obviously negative
definite by condition (iii). Hence, there exists a positive number y such that

W=—y(V2+|f(a)P).

(11) W=—aV2—r|flo)f+ V( +c) If(@)).

From this it follows that
W = '—Y'D(ta ¢)|2,

so that the second condition of (4.2) in Theorem 4.1 of Cruz and Hale [3] is met for the
Liapunov function W. Trivially, also the other conditions in (4.2) are satisfied. Because
D is a uniformly stable operator the operator D given by

Dy =y(0)-5(1, ¥),

where
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is uniformly stable. Therefore, by Theorem 4.1 of [3] the system

d - _
E(D(t))’t) =gt y)

is uniformly asymptotically stable. Here
— D(t)x
D(t))’r'_‘( () ‘)9
a

_ _[A®@ x)+bf(o)
glty)= [B(t, x(t)—rf(o-)] :
The proof is complete.

THEOREM 3.2. Consider (8), and assume that A(t,0)=0, A(t, @) is locally Lip-

schitz in ¢ uniformly with respect to t, and the operator D satisfies
ID(1)¢| =M|i#l,

locally in ¢ € C, for all t =ty and some M. Assume that D is uniformly stable and that (6)

is uniformly asymptotically stable. Let K and B be as given by Theorem 2.2 and assume
that

(1) For all 6 €[0, h] the relation
Kb \?

4Br> (c +—1_——l(7)>

holds where | is defined in (5), and where c is a constant such that
(i) |B(t, x(1)| = c|D(2)x.]

for all continuous x and all t € I.

(iii)

[ ) ds>o0,  as o] >0,
0

Then there exists a 80> 0, such that forany e,0<e <8yandany to =0, thereisa d = 8(¢)
such that |o|| < & implies ||x.(to, ®)|| <€ for all t €[to, ©); and for any >0, 0=n = ,,
there exists a T(n) >0, such that ||¢| = 8, implies ||x.(to, DN =, if t = to+ T(n). In other
words all solutions in the ball S(8o) < C are uniformly asymptotically stable.

Proof. The hypotheses of the theorem imply there is a Liapunov functional V/
satisfying the conditions of Theorem 2.2. Choose &, as in Theorem 2.2. Let Vg, denote
the derivative of V along solutions of (8).If y = y(¢o, @), x = x(to, ¢) are the solutions of
(8) and (6) respectively, then, as before,

_K

Ve, )= Viet, ) + 1=1(ho)

|bf (o),

provided ||¢| = 8. On using

V2 o

W=—=+ I f(s) ds,
2 Jb

one easily verifies that the conditions of Theorem 4.1 of [3] are satisfied for W, provided

||l = 8o. By the cited theorem the trivial solution of (8) is uniformly asymptotically
stable when confined to the ball $(§,) < C.
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Consider the direct control case:

%(D(t)x,) —AGx)Fbf(@), o =cTDM)x,
(12)

L Dwr =B+ b@),  r=o

where the stable atomic operator D is atomic at 0, and where the letters are there
defined above and ¢ b = —r <0.

THEOREM 3.3. Assume that D(t) and A(t, - ) are bounded linear operators from C
into E" such that

ID(n)¢| =Ll
forallt=ty, ¢ € C, and

(13) |B(1, #)| =BID(¢|,  B>0.

Suppose (6) is uniformly asymptotically stable and
(i) f(0)=0, af(o)>0, o #0, f continuous and

[(#©)ds =, aslolsw.
0

(ii) Let a and K be given by Theorem 2.1 and let the relation

apl 1
14 Sar >( + )
(14 riTle
hold for all s €[0, h], where | is defined in (5).
Then (12) is uniformly asymptotically stable.
Proof. Proceed as before, using Theorem 2.1 to obtain a Liapunov functional V for
the system (6). Differentiating V' along solutions of (12) yields

Vit 8)= Vielt, ) +1 ,( TG P @k
Set
V2 a
W=7+J.O d(s) ds.
Then
Vk|b,
Wany=—aV>+ __Il{;l:))l"'f( )o

- k|b| r
< —aV? 1| f(o)+ v[ i le |]

where we have used (13) and the property of V. We now use (14) to deduce the result as
before.
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A NOTE ON MULTIPLE ASYMPTOTIC SERIES*
R. D. GREGORY'

Abstract. There has appeared in the literature [K. D. Shere, Introduction to multiple asymptotic series

with an application to elastic scattering an attempt to extend the concept of asymptotic series to ‘“‘multiple
asymptotic series”’ of the form
~Amx

o 0

mz-O ngo G x" '
Applications referring to this work have also appeared in W. Biihring [J. Mathematical Phys., 18 (1977), pp.
1121-1136], W. Biihring [Angew. Math. Mech., 57 (1977), T226~T227], K. D. Shere [SIAM J. Math. Anal.,
3 (1972), pp. 263-271], and K. D. Shere [SIAM J. Math. Anal., 3 (1972), pp. 272-284]. It is the purpose of
this note to show that the definition of a ‘“‘multiple asymptotic series” given in K. D. Shere
[J. Mathematical Phys., 12 (1971), pp. 78-82] is unsound in the sense that it fails to satisfy certain basic criteria
(for instance when the series involved are convergent then they are not necessarily asymptotic, according to
this definition); also even though uncountably many alternative definitions exist which overcome these
difficulties, each is quite arbitrary and has little practical value.

1. The definition of multiple asymptotic series given in [§]. Suppose that we wish
to give a meaning to the formal expansion

(1.1) Fx)= Y a—2+e"‘ Y -ll',% as x > 00,
n=0X n=0X

(Actually the work in [5] is carried through in greater generality, but there is no need for
this in the present note.)

If © g
F(X)~ Z —: as x >0,

n=0X

(where here and elsewhere the ~ symbol is used in the normal Poincaré sense) and this
series is convergent for x sufficiently large, then there is no difficulty. We would merely
regard (1.1) as meaning

(1.2) e"{F(x)— ¥ g%}-v ¥ E’,,— as x - 0.
n=0 n=0X

However, if the series Z:‘;O a,x”" is not convergent but only asymptotic as x -, the
expression on the left in (1.2) is without meaning. The device suggested in [5] is to
replace the divergent expression Yo, a.x " in (1.2) by a constructed function F*(x)
which is known to be asymptotic to
o a.
Y — asx->00.
n=0X
To be precise (for the case in which |a,|= 1, Vn), the choice of F*(x) given in [5] is
® anf. 1 x°
- £ 2f1-em {4 25
(13) 2 .on P72 |a,|n!
a construction due to Ritt [3].
The series in (1.3) is convergent and

o

(1.4) F*(x)~ ¥ g—,’} as x > 00,
n=0X
* Received by the editors August 23, 1978, and in revised form January 4, 1979.
+ Department of Mathematics, University of Manchester, Manchester, England M13 9PL. On leave of
absence at the University of British Columbia, Vancouver, B.C. V6T 1W5 Canada, during 1977-79. This
work was supported in part by N.R.C. under Grants A9259 and A9117.
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In terms of this F*, the definition of the multiple asymptotic series (M.A.S.) (1.1), as
given in [5], is that

(1.5) e*[F(x)—F*(x)]~ § f% as x - 00.

This definition does however have very serious disadvantages, namely:
(i) if F(x) is such that the series in (1.1) are both convergent, then F(x) may not
possess an M.A.S. in the above sense;
(ii) the functions which do possess an M.A.S. in this sense do not form a linear
space.
To show (i), consider the function

x 00

1 _
+e =Y —+e " (x>1).
x—1 n=0X

Then F*, as given by (1.3) is

(1.6) F(x)=

o 1 1 x?
(1.7) F*(x)=n§0x—n[1‘e’“’ {‘5 m}]
and so
© x 2
(1.8) e {F(x)—F*(x)}= gofzexp {-% %}+1~

Now let x - o through the sequence of values X =(x,,), where x,, = (m)?

Then

,m=0.

o 1 r2n Xm
A= e F (o) - F*a) =1+ 3 exp (-3 22) %7
(1 9) n=0 2 n! Xm
. o ex (_lﬁ)ﬁﬁ_ 126"
P\72 1 xﬁ_e (m))™*
So
(1.10) logAm>(m!)1/2—%m log(m!)—3>00 asm 0.
Hence
(1.11) e {F(x)—F*(x)}~» o0

as x - oo through X, and so no choice of the (b,,) may be made to satisfy (1.5). Thus no
M.A.S. exists for the function (1.6).
To show (ii), consider the function

2

® n! x —x
(1.12) G(x)=nz=‘,0;-,,—[l—exp{—Z(n!)z}]+e .
Since
(1.13) G(x)~ E _r_z_; as x > 00,
n=0X

it follows from the construction (1.3) that

(1.14) G*(x)=§0§[1—~exp{—§%’:7}]
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and hence from the definition (1.5) that G(x) has the M.A..S.

® n!
(1.15) Gx)= Y —+e "

n=0X
But the function H (x)=2G(x) has no M.A.S., since

® 2nle” x? } { x2 }]
x — * == — —_———— —_—5 +2

(1.16) e"{H(x)—-H*(x)}= X pC [exp{ 42 TP LT 2y
(1.17) ->00 asx - o0 through X,

as with counterexample (i).
These two counterexamples contradict Theorems 2.1 and 2.2 in [5]. The error in
these theorems is an (apparent) assumption that relations such as

1 2
(1.18) exp{ 2. x| '}-o(e."‘) as x - 00,

are uniformly valid in n. In particular the statements f5 € %, in Theorem 2.1, and
fo(x)go(x) € % in Theorem 2.2 are false.

2. Alternative definitions of multiple asymptotic series. It could be argued that
the preceding difficulties arise from the fact that (1.3) is a “wrong” choice for F*, and
that by a “correct” choice of F* these difficulties would disappear. This is in fact so,
and indeed there are uncountably many such definitions which will avoid the difficulties
(1), (ii).

To show that such choices for F* exist, proceed as follows:

Let

={F(x);F(x)~ Y -S% as x - o0, for some (an)}
n=0

and define on & the equivalence relation
Fi(x)=F,(x) iff Fix)-Fy(x)=0(x"") asx->o, Vn=z=0.

Let T be the linear space of equivalence classes generated on % by = (with the linear
operations defined in the obvious way, as with the %,-spaces). Then T is clearly
isomorphic to the linear space S of all sequences (a,). Thus any definition for F*(x)
merely consists of selecting a single representative from each of the above equivalence
classes. Let S be the subspace of S whose sequences (a,) are such that the series
Z::O a.x”" is convergent for sufﬁaently large x, and let T be the corresponding
subspace of T. Take a Hamel basis B of T, and extend it to be a Hamel basis B of T. [See
Rudin [4], p. 52 for a definition of Hamel basis.]
Now select F*(x) as follows:
(a) For the elements of B let
F*x)= Y =
x

n?
n=0

which is defined for x sufﬁcien}ly large.

(b) For the elements of B not in B, assign F* arbitrarily.

(c) For all other elements of T, construct F* by finite linear combinations from (a),
(b).

Any of these uncountably many definitions of F* will overcome the difficulties (i),

(ii).
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Unfortunately, each of these definitions is quite arbitrary so that in a problem
where F(x) is unknown, and where we are seeking to determine its asymptotic behavior
as x - 00, one would not know the correct F* to choose unless perhaps there were some
physical motivation to guide this choice. This is best illustrated by an example. Suppose
we have shown that an (unknown) F(x) is such that

2 n!
2.1) F(x)~ Y — asx->00,
n=0X
and we wish to proceed on to find an M.A.S. for F(x). Suppose we have made the
selection of F*, corresponding to (n!), to be (say)
2

22 =5 5 1-eo -0 pl]
( . ) (x)_néoxn —€Xp _(n!)2 .
Then if the unknown function F were actually
© 4 2
(2.3) Fx)= Y -n—,;[l——exp{——g—g}]+e_x,
n=0X (n')

it follows that F(x) would possess no M.A.S. In short, one only knows the “correct”
choice for F* when F(x) is already known correct to O(e ™).

3. Comparison with uniform asymptotic expansions. For functions of the form
F(x, €), where £ =0 is an additional parameter, the statement

3.1) Flr,e)~ 3 @) e 3 nle)

n=0 X n=0 X
as x -» 00, uniformly for € =0, certainly has a meaning and implies more information
than the nonuniform asymptotic series

(3.2) Fx, )~ 3 248,
n=0

valid for each £ > 0. The point of the previous sections is that a uniform formula such as

(3.1) cannot be deduced by seeking further precision from the nonuniform formula

(3.2), unless the series in (3.2) is actually convergent.
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STRUCTURE OF RESOLVENTS OF VOLTERRA INTEGRAL AND
INTEGRODIFFERENTIAL SYSTEMS*

G. S. JORDANT AND ROBERT L. WHEELER#

Abstract. Conditions are given which ensure that the resolvent of a linear Volterra integral or
integrodifferential system whose kernel belongs to a weighted L space may be written as a matrix whose
entries are finite sums of products of polynomials and exponentials, plus a matrix which belongs to the same
weighted L' space. These results are obtained from theorems of the same type which we prove for more
general linear Volterra-Stieltjes equations. The results are stated in terms of Laplace transform hypotheses
and moment conditions.

1. Introduction. The integral resolvent r(¢) and differential resolvent R (¢) deter-
mined by the equations

t

(1.1) r(t)=B(t)—j r(t—s)B(s) ds (te RT=[0, ),
0
(1.2) R’(t)=R(t)d+JtR(t—s)B(s) ds (R(0)=LteR™)
0
are associated with the linear Volterra integral and integrodifferential systems
(1.3) x(t)=f(t)—j x(t—s)B(s) ds (teRM),
0
(1.4) x'(t)=x(t).9¢+J x(t—s)B(s) ds+f(2) (x(0)=xo,2eR™),
0

respectively. Here r(t), R(t), & and B(¢) are n X n matrices, I is the identity matrix, and
x(¢) and f(¢) are row vectors with n components. Under mild assumptions on B(¢) and
f(¢) (see [10, Chap. 4] and [4]), (1.3) and (1.4) are solved by

(1.5) x(t)=f(t)—L fi-s)(s)ds  (teR"),

(1.6) x(2) =x0R(t)+J't f(t-s)R(s)ds  (teR"),
0

respectively.

Let B(t)e L'(R*) and let B(z)=[; e *B(t) dt denote the Laplace transform of

B(t). Then a classical result due to Paley and Wiener [13] is that r(¢) eL'(R") if and
only if

(1.7) det[I+B(2)]#0  (Rezz0),

and a more recent result of Grossman and Miller [5] is that R(¢) € L' (R ") if and only if

(1.8) det[zI —~{—B(2)]#0  (Rez=0).

F‘cir E'e]su[lts] on the integrability of resolvents when the kernel B(t)¢ L'(R"), see [14],
71, [91, [3].
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Analogues of the results of Paley and Wiener and of Grossman and Miller when
B(1) belongs to a weighted L' space have been proved by Gelfand, Raikov and Shilov
[2,p. 116](see also[1]) and by Shea and Wainger [14], respectively. Our purpose here is
to describe the structure of r(t) and R (¢) when B(t) belongs to a weighted L' space and
the determinants in (1.7) and (1.8) have finitely many zeros in the associated closed
half-plane of convergence of B(2).

We consider a positive continuous weight function p(t) on R such that p(0)=1,

(1.9 p(s+t)=p(s)p(t)  (0=s,t<0),
and if
1 t
po=lim o_g_& with —c0 < py <0
then
(1.10) p(t)e™" isnondecreasingon R™.

(The existence of the limit po follows from (1.9); see [2, p. 113]. The regularity condition
(1.10) is used to estimate certain integrals and is a crucial hypothesis of the proposition
of [8] which we use in § 3; no regularity condition is assumed in [1],[2], [14].) The space
L'(R™, p) consists of all n X n matrix functions B(¢) for which each component B;; is
Borel measurable and satisfies

Some of the many interesting and important special choices of p(¢) satisfying our
conditions (1.9) and (1.10) are

pi(t)=e " (teR™, —00 < py< ),
p2(t) = (1+1)*p1(2) (teR*, k=0),
ps(t) =[1+log (1+1)]°p2(7) (teR™,p=0).

For B(1)e L'(R", p) the determinants in (1.7) and (1.8) exist for Re z = p, and are
analytic in Re z > po. Thus, the meaning of a zero of order m (1 =m < c0) in this open
half-plane is clear. If zo on Re z = pg is a zero of one of the determinants, then we say
that z, is a zero of order m if t"B(r)e L'(R™, p) and the determinant and its first m — 1
derivatives vanish at z,, but its mth derivative is nonzero at zo.

THEOREM 1.1. Ler B(f)e L'(R™, p) and assume that the only zeros of det[I +
B(z)]inRez= pooccuratz = zj, 1 =j = M. Let m; be the order of the zero z; and assume
that either (i) Re z;>po, 1 =j=M, or (i) Re z;=pg, 1 =j=N,and Re z; > po, N<j =
M. In case (i) put m =0 and in case (ii) put m = max {my, - -, mn}.

If *"B(t)e L'(R™, p), then the solution r(t) of the integral resolvent equation (1.1)
may be expressed as

(1.11) W)=Y P e +n()  (teR),
i=1

where, for each j, P;(t) is a matrix of polynomials of degree at most m; —1 which depend
only on B(t), and ri(t1)e L'(R™, p).

(In Theorem 1.1 and in similar situations later the requirement Re z; > po, N <j =
M, is to be ignored when N = M.)
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The analogous result for the differential resolvent R(¢) is

THEOREM 1.2. Let B(t)e L'(R", p) and assume that the only zeros of det[zI —
A —B(z)] in Re z =po occur at z =z, L =j = M. Let m; be the order of the zero z; and
assume that either (i) Re z; > po, 1 =j =M, or (ii) Re z; = po, 1 =j = N, and Re z; > po,
N <j=M. In case (i) put m =0 and in case (ii) put m =max {m,, - - -, my}.

If"B(t)e L'(R", p), then the solution R(t) of (1.2) satisfies (1.11) with r(t) and
r1(t) replaced by R (t) and R (1), respectively, and with R(t) and R (t) bothin L'(R™, p).

The scalar case of Theorem 1.2 (with p(¢) = 1) was proved by Miller [11, Thm. 6]. If
(1.2) and (1.4) are not scalar equations (i.e., if n > 1), then Theorem 1.2 is new (even for
p(t)=1) and sharpens Theorem 5 of [11] in which the kernel B(¢) is required to have
2M; moments where M;=m;+ -+ +my is the total multiplicity of the zeros on
Re z = po. Theorem 1.1 is new since a study of the structure of the integral resolvent r(¢)
in (1.1) has not previously been made when the determinant in (1.7) vanishes at a finite
number of points in the closed half-plane Re z = p,.

We remark that it is easy to show (see the discussion on pp. 613-614 of [8]) that the
moment condition assumed in Theorems 1.1 and 1.2 is best possible even in the scalar
case.

Hannsgen [6] has recently obtained the above decomposition of the differential
resolvent R (¢) in the scalar case when &« = 0 and when the kernel is piecewise linear and
in L'(R™). The assumption that the kernel is piecewise linear enables Hannsgen to
avoid the moment hypothesis of Theorem 1.2.

Asformulae (1.5) and (1.6) show, knowledge that the resolvents r(¢) and R (¢) have
the form (1.11) with r(¢) and R(¢) in L'(R™, p) is clearly useful in analyzing the
solutions of the linear Volterra equations (1.3) and (1.4), respectively. Moreover, r(t)
and R(¢) also occur in ‘“variation of constants” formulae (see [10, Chap. 4] and [4])
which solve certain nonlinear perturbed forms of (1.3) and (1.4). An examination of the
results in [11, § 6] shows that formula (1.6) and the variation of constants formula may
be combined with the fact that the remainder term R;(¢) is absolutely integrable to
investigate the behavior of solutions of certain forced linear and nonlinear perturbed
integrodifferential equations. For another application, see the paper [12] by Miller and
Nohel. Also, results similar to those in [11, § 6] hold in the case of (1.3).

Theorems 1.1 and 1.2 are consequences of results in §2 for more general
Volterra-Stieltjes systems of convolution type; see § 5 for their proofs.

2. Linear Volterra-Stieltjes systems. In this section we consider the linear
Volterra-Stieltjes systems.

t
2.1y u *A(t)sj u(t—s)dA(s)=f() (teR™)
0
and
(2.2) u®+uxAN)=f1)  (u(0)=uop,teR")
where f=(f1, -+, f,) and u are complex vector functions with n components, and

A =[A;]is an n X n matrix of complex-valued functions.

Our setting is similar to that of [8]. Namely, if p(¢) is a weight function as defined in
the Introduction, the weighted space V.[p] consists of all » X n matrix functions A ()
for which each component A;; is of bounded variation on every finite interval [0, T], is
normalized to be left-continuous and vanish at 0, and satisfies

A= L p(dA; (<o (1=i,j=n).
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For A(t)e V.[p] the Laplace-Stieltjes transform A(z) EISO e * dA(t) converges
absolutely for Re z = p,. Moreover, A(z) is bounded and continuous in Re z = p, and
analytic in Re z > po. Also, A(¢#) may be decomposed as

(2.3) A(t)=ha(t) +gal(t) +sa(t),

where ha =[ha,] is a matrix of discrete functions, g4 =[ga,] is a matrix of functions
absolutely continuous on each finite interval, and sa =[sa,] is a matrix of singular
functions. See [8] and [2, p. 166] for a more complete discussion of these ideas.

If p(¢) is a weight function, m is a nonnegative integer, A € V.[p]and f e LY(R", p),
then we denote by H(A, m, p) and H(f, m, p) the (absolute) moment conditions

H(A, m,p): I p(Ot™|dA;()|<o (1=i,j=n),
0

H(f, m,p): L pt™fi()|dt<oco (1=i=n).

We remark that the definition of H(f, m, p) used here differs from the one used in [8].
Associate with A (¢) € V. [p] the scalar function

D(t) = Z sgn (O-)Alo'(l) *ocot ok Ancr(n)a

o€S,

where S, is the symmetric group on {1, -, n} and sgn (o) ==+1 according as the
permutation o is even or odd. Equivalently, D(¢) is the scalar function which satisfies

D(z)=detA(z) (Rez=po).

Since det A(z) is analytic in Re z > p,, the meaning of a zero of order m in Re z > py is

clear. If Re zo = po, then we say that z, is a zero of det A(z) of order m if H(A, m, p)
holds and

J e dD() =0 (0=j=m-1),
0

but
I e ™ dD () #0.
0

Note that if we decompose D(¢t) as D(¢t) = hp(t) + gp(t) +sp(¢) (as in (2.3)), then,
since the discrete part of the convolution of two functions in V., [p]is the convolution of
their discrete parts [2, p. 179], we have

hp(z)=detha(z)  (Rez=po).

Finally, in Theorem 2.1 we assume that the solution u(¢) of (2.1) exists and is Borel
measurable on R* and that [ p(£)|u(¢)| dt <o for all T>0.

THEOREM 2.1. Let A€ V.,[p] and assume that in Re z Zp, det A(z) has zeros
only at z = z;, 1 =j = M. Suppose that
except near the points zj, 1 =j= M,

2.4 1/D(z) is bounded in Re z = po

and

(2.5) inf__|det ha(po+io)| > |lspll.

—o0<
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Let m; be the order of the zero z; and assume that either (i) Re z;>po, 1 =j =M or (ii)
Re z; =po, 1 =j =N, and Re z; > po, N <j =M. In case (i) put m =0 and in case (ii) put
m=max{my, -, mn}.

Iffe L'(R", p) and H(A, 2m, p), H(f, m, p) hold, then the solution u(t) of (2.1)
satisfies

@6 w)= T o e i) (teR")

where, for each j, pj(t) = (pi1(t), - - -, Din(t)) with each p;(t) a polynomial of degree at
most m; —1 which depends on A and f, and u; € L'(R*, p).

The proof of Theorem 2.1 is given in § 3.

We next consider (2.2). By a solution of (2.2) we mean a vector u(¢) absolutely
continuous on bounded intervals [0, T], and such that #(0) = u, and (2.2) holds a.e. on
R™. To describe the solution of (2.2) we consider the zeros of

2.7 det[zI+A(z)] (Rez=po),

where I is the n X n identity matrix. Since this determinant is analytic in Re z > p,, the
meaning of a zero of order m in Re z > py is clear. If zo on Re z = py is a zero of the
determinant, then z, is a zero of order m if H(A, m, p) holds and

i
:%;(det[zl+A~(z)])=0 (z=20,0=j=m—1),

but

3‘—’? (det[zI +A(2))#0  (z=zo).
We then have

THEOREM 2.2. Let A€ V.[p] and assume that in Re z Zp, the determinant in
(2.7) has zeros only at z = z;, 1 =j = M. Let m; be the order of the zero z; and assume that
either i) Re z;>po, 1=j=M,or (ii)Re z;=po, 1=j=N,and Re z; > po, N<j=M. In
case (i) put m =0 and in case (ii) put m = max {m,, - - -, mn}.

IffeL'(R", p) and H(A, 2m, p), H(f, m, p) hold, then the solution of (2.2) has the
form (2.6) with uy(t) and u(¢t) both in L'(R™, p).

We note that in the case of Theorem 2.2, unlike Theorem 2.1, we do not require
hypotheses such as (2.4) and (2.5). The reason for this will be apparent in the proof of
Theorem 2.2 which is given in § 4.

Theorems 2.1 and 2.2 are somewhat similar to the results in [8] where it is proved
(under different moment hypotheses) that if fe L*(0, T) for all T>0 and f(¢)=
o(1/p(2)) as t—> o0, then the solutions of (2.1) and (2.2) have the form (2.6) with
ui(t)=0(1/p(2)) as t » 0. Theorems 2.1 and 2.2 are more useful than the results in [8]
in view of the fact that they may be used to obtain results of the type in [11, § 6] (see the
discussion at the end of § 1) which are more useful than the results one obtains from
R,(t)=0(1/p(2)) as t—»> 0. For example, properties of p(¢)f(t) such as boundedness,
convergence at +o0, and integrability on R* propagate the same behavior to the
convolution [; f(t —s)R1(s) ds when R,(¢) is integrable with respect to p(z), but not
necessarily when R,(t) =0(1/p(t)) as t > c0.

It would be of interest to analyze the behavior of solutions of (2.1) (respectively,
(2.2)) when det A(z) (respectively, det [z] +A(z)]) has an infinite number of zeros in
Re z = po. However, our technique of stripping zeros which comprises the heart of the
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proof of Theorem 2.1 leads to convergence problems when there are infinitely many
zeros. In particular, it is not clear what happens to the first term on the right in (2.6) as
M > 0.

3. Proof of Theorem 2.1. We break the proof into three parts: (A) the scalar case
when condition (i) holds, (B) the scalar case when condition (ii) holds, and (C) the vector
case. We remark that in the two scalar cases D () = A(?).

Proof of part A. The proof of this case is similar to the proof of Theorem 1 of [8]. Let
Vi(t)= Z’ Cl,jj e dr/(1-1)! (—o<t< ),
=1 0

where ‘7,-(2) =¥ ¢,(z —z,)”" is the principal part of 1/ A(z)at z = z;. The proposition
in [8] yields the existence of Co(t) € V.[p] such that

(3.1) u(t)=f Co(t)+§f* Vi(t) (teR™Y).

A simple argument using (1.9), an interchange of the order of integration,
fe L'(R", p)and Cye V.[p]showsthat f + Coe L'(R", p). Also, the Laplace transform
f(z) exists for Re z = po. Thus, as in [8],

f*Vi(t)= l;f_; c,,,-{j(:f(s)(z‘-~s)l'1 e *F ds} ez"'/(l— 1)!

- é c:,,-{ Y (l ; 1)#’ L' f(s)(—s)' 1P e ds} e / (=1

p=0
7

-Zaf 3 (N e[ s e as) fu-

= p=0

=p0 e~ % ey | fe)e-9)" e ds fu-1,
=1 t

where clearly p;(¢) is a polynomial of degree at most m; —1 which depends only on A
and f. Furthermore, if we write Re z; =p¢+3;, §,>0, then using (1.10) and fe
L'(R", p), we find that

j: p(0)

[ f(s)(t—s>’"lez"“_”dS| dt= p(t)] [F(s)] |t =s|' 7" ™™ ds
t J0 t

p OO

[ ol le=si e as ar
0

t

A

A

p(s)f(s)] j = 5| &2 d ds
Jo 0

o]

éKL p(s)|f(s)| ds < .

Combining these results with (3.1) yields (2.6) and completes the proof of Part A.
Proof of part B. The proof of this case is similar to the proof of Theorem 2 of [8];

however, to avoid numerous references to the argument in [8)], we give the proof in

some detail. The idea of the proof is to reduce this case to the situation covered by Part
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A.First,let N, 1 = ’Zc = m, be the number of zeros of A~(z) of order k on Re z = p, and
put Mo =0, M, =Y,_, N, 1 =k = m. Furthermore, let the zeros be labeled so that z; is a
zero of order k for M, <j=M,.

The proof is by induction on m. Thus, suppose m = 1, so that all the zeros of A(2)
on Re z = p, are simple. Fix zo, Re z9<po, and define

t

3.2) S,»(t)=(z,~—zo)J e’ ds (1=j=N,teR")
(4]

and

Bi(t)=J+S1) * - »(J+Sn)(2) (teRM),
where J is the unit step function
(3.3) J(0)=0, J()=1 (£>0).
Finally, put
34) Ci(t)=A = By(t) (teR™M).

Observe that B,(#) may be written as

3.5 N
G- Bi()=J(0)+ ¥ a;S;(t1)  (teRY),
j=1
where
N . _
a].:l—[z_’_zﬂ (f=1,2,"',N).
k=12~ 2k
ksj

This representation may be obtained by a simple Laplace transform argument; see
[8, p. 604] for details.

Combining (3.4), (3.5) and (3.2) with A(zj) =0, 1=j=N, yields

Ci()= AW - 3, ay(z; - 20 E(),

i=1

where
(ezf'J e *F dA(s)+A(t))/z,-, (z; #0),
t
Ei(n=4 .
tJ. dA(s)+J. sdA(s), (z;=0).
t 0
Consequently,

N o
dCi(=dA(n) - X ai(zf—zo)J. e " dA(s) e dt.
1 t

j=

(We remark that the expression (3.7) for C;(¢) and the expression for dC,(¢) in [8, p.
604] are inaccurate; however, the inaccuracies do not affect the results there. The
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expressions given above are correct.) By (1.10) and H(A, 2, p)

Lw p(0)t

p OO

e’f'J’ e dA(s)l dt=

p(t) ep"'tj e °|dA(s)| dt

0

= e”"OSJ' p(t) e®'tdt|dA(s))

Y0 0

p OO

IA

p(s)(s*/2)dA(s)| <0

J0

for 1=j=N; hence, H(Cy, 1, p) clearly holds.

Now define
(3.6) ul(t)=u(t)—iglﬁ,~ez"' (teR"),
where
(3.7) Bi=fz)/A'(z;) (1sj=N).

Then it follows from (3.6), (3.4), (2.1), (3.5), (3.2), H(f, 1, p) and C, € V.[p] that

u'« Ci(t)=u » Ci(t)— g B,ez"‘J' e “*dCi(s)
ji=1 0
N ~ ® z.t
=f*By(t)— X Bi{cl(zi)_J e " dCl(S)} e’
j=1 t
N . oo
=10+ ¥ ez 20| Fe) =] e (s) ds) e
ji=1 t

=fi(t) (teR™).

To see that the result established in part A applies to the equation

(3.8) Ul*Cl(t)=f1(f) (teR™),
note first that by (3.4) and the definition of B,(t),
o - - - N —
Ci(2)=A(2)Bi(2) = A(z) ] =22
k=12 — 2k

for Re z =Zpo, z #z;, 1=j=N. It follows from m; =1, the definition of «,, and the
continuity of A'(z) and C,(z) that

(3.9) C~1(Zj)=ajx‘{l(zj)(2/“zo)¢0

for 1=j=N. Thus, C1(z) has the same zeros (including order) as A(z)inRe z > poand
has no zeros on Re z = p,. Furthermore, except near the points z, N <j =M, 1/ C’l(z) is
bounded in Re z = p,.

Now, let the discrete and singular parts of C,(¢) be h(¢) and s,(¢), respectively.
Then h; =ha and s, =54, for by (3.5) C; = A » B, can be writtenas A «J = A plus a
linear combination of convolutions of A with the functions S;, 1 =j = N, and it is easy to
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see that these convolutions are absolutely continuous. Hence, (2.5) holds with the
subscripts A and D replaced by 1 (recall D = A since n =1).

It remalns to show .that fi(r)e L'(R",p). By (3.7) and (3.9), B,Cl(z,) =
aj(zi— zo)f(z,), so that the expression for f;(¢) simplifies to

O

610 A0=10+3 {8 e -ata-z0 [ s} e,

t

Since H(C4, 1, p) and H(f, 1, p) hold, computations similar to those above establishing
H(Cy, 1,p) now show that the integral terms in (3.10) belong to L'(R™, p). By

assumption, f€ L'(R™, p) and we may apply Part A of the proof of Theorem 2.1 to (3.8)
to obtain

M
wm)= L p0) e +u)

or, by (3.6),

M
u()= 1 p0) e +ui(1),

where p;(t), 1 =j = M, is a polynomial of degree at most m; — 1 which depends only on A
and f, and u; € L'(R", p). The proof of part B when m =1 is complete.
Now assume the theorem is true for 1 = m = n and consider the case m = n + 1. For
M, <j=M,., =N, let S;(¢) be defined as in (3.2) and put
B, ()= (J+SM,.+1) LS (J+SN)(I)
3.11 N .
G0 —I0+ T @) (eR™;
=M, +1
here, as before, J(¢) is the unit step function defined in (3.3) and

N Zi— 2o

o=

(j=Mn+1,' ° ,N)-
k=M,+1 2j — Zk
k#j

Finally, put
(3.12) Cria(t)=A x B, 44(1) (reR™).

An argument similar to the one yielding H(Ci, 1, p) shows that H (A 2m, p)
implies H (C,,H, 2m —1, p) where m = n +1. Moreover, as was the case with Cl(z), in
Rez > Po ¢ nH(z) has the same zeros (including order) as A(z) On Re z = p, the only
zeros of Cn+1(z) are the z;, 1=j=N; if 1=j=M,, then z; is a zero of order m, for

Coii1(z), butif M, < J =N, then z; is azero of order m; — 1 for C,.1(z). Furthermore, for
M, <j=N, one may use (3.12), the expression for B,.1(z), the definition of aj,
n =m;—1, and Taylor’s formula with remainder to obtain

(3.13) Ci (2= (2= 20 A" (2)/(n + 1.
Also, Taylor’s formula with remainder yields
(3.14) A)=A" W)z -2z)""/(n+1)!  (RezZ=py)
for some w on the line from z; to z. If at z; 1/A(z) has “principal part”
Cn+1, Cn,j Ci,j
3.15 T Tt
( ) (z—z)"" (z—2z) (z-2z)
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then, by writing 1= A(z)(1/A(z)) and using (3.14) and (3.15), we find upon letting z
tend to z; that

(3.16) Cnsry=m+ DA™V (Z).

Now define

" =ut-gt) (teR),
where
N
g(t)= 4=1§' (Carri/nDf(z)t" e (teR™).
Then, by (3.12),
U™ % Cora(t) = u % Coa1(t) — g * Crra(t)
=f* Bn+1(t)__g * Cn+1(t)
=fu1(t) (teR™).

In order to apply the inductive hypothesis to the equation
(3.17) U™ w Cot(t) = fara(t) (teR™)

we must show that £, .1(f)e L'(R ", p) and that H(f+1, n, p) holds. First, using (3.11) in
the definition of f,.1(f) yields

318)  foul)=fO)+ ¥ ai(zi—zo)“ fs) e ds} e —g % Coni(0),
=M, +1 0

where

(3.19) g* Coii(t)= g (Cnsri/n !)f(zi) L (t—s)" e 5 dCyir(s) €™

j=M,+1
For M,, <j<N, put B; =c,+1,/n! and observe from (3.13) and (3.16) that
Bjés:l-zl (Zj) = aj(Zf —Zo).

Thus, by applying the binomial theorem to (¢ —s)" in (3.19) and rewriting the integral,
we have

g Cu)= ¥ fe) 5 ()r{enr - [ corretacne) e

t

»

=M, +

N . . ')

= ) 'f(Zj){Cflnzl(Zj)_J‘ (t—s)"e _Z’SanH(s)} e’

j=M,+1 ;

N . 00

X almzofe) e > @f(z,)j (t1—$)" ™% dCyor(s) 7.
=M, + =M, +1 t

Substituting this expression in (3.18) and writing

L f(s)e 5 ds =f(z,-)—j f(s)e *’ds
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yield

f"“(t):f(t)_j g ai(zi—zo){J’toof(S)e—z"sds}ezi‘

nt

(3.20) N -
+ ¥ B,f(z,)j (t—5)" e 5 dCyiv(s) €7
j=M,+1 t

That f,..(r)e L'(R™, p) follows easily from (3.20) since f(¢)e LY(R*, p), p(t)
satisfies (1.10), and H(f,n+1, p) and H(C,+1,2n+1, p) hold.

Observe next that H(C,+1, 2n+1, p) and (1.10) imply

I p(0)t"

0

o 0O

I (t—s)" 5™ anH(s)‘ dt=| pt" I s" e?01dC, 1 (s)| dt
t t

70

o 0O

p(S)S"I t" dt|dC,1(s)|
0 0

p O

p(s)s”" HdCy i (s)] < co.
Jo
Similarly, it follows from H(f, n +1, p) and (1.10) that

Lw p(t)t"

Using these results in (3.20) and recalling the hypothesis H(f, n + 1, p), we clearly have
that H(f,+1, n, p) holds.

The inductive hypothesis implies that u

(3.21)

fIA

IIA

J f(s) e ds

dt éj p(s)s"f(s)| ds < 0.

n+1

(¢) has the form
u"(n) = Y pf@ e +u(t) (teR™),
iz

where u,(r)e L'(R™, p) and the p (¢) are polynomials of degree at most m; — 1 unless
M, <j =N, in which case the degree is at most m; —2. Thus,

M
u@®)= 3 0 e +ul)  @eRY),

where p;(t) = p¥ (1), 1=j =M, and N <j =M, and p;(t) = p(t) + (cas1,/n)f(z))t" €7,
M, <j=N. The proof of part B is now complete.

Proof of part C. The proof of this case is similar to the proof of Theorem 3 of [8]. Let
adj A denote the n X n matrix which is formally the adjoint of A but with convolution
replacing multiplication. Then the equation

(3.22) u+rAxadjA(t)=f+adj A(r) (teR™)
is equivalent to the n scalar equations
(3.23) ur * D(t) = ¢ (1) (1sk=n,teR"),

where ¢ = (b1, * +, d,) =f xadj A. (Here uy, k =1, should not be confused with the
remainder term u; in (2.6).)

Conditions H(¢, m, p) and H (D, 2m, p) follow easily from hypotheses H(f, m, p)
and H(A, 2m, p). Also, since A€ V. [pland f(r)e L'(R", p), we have ¢(t) e L'(R", p).
Finally, we recall (see § 2) that };D(z) =det hia (2). Thus, part B of the proof of Theorem
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2.1 may be applied to each of the scalar equations in (3.23) to obtain
M
w(t) = 21 Pi (1) € + w1 (1) (1=k=n),
iz

where w1 (r)e L'(R", p) and pix(t) is a polynomial of degree at most m; —1 which
depends only on A and f. Setting p;(¢) = (pj1(t), - -, pin(t)) 1=j=M,tcR") and
ur(t) = (un1(t), - - -, u1,(t)) (te R") completes part C of the proof of Theorem 2.1.

4. Proof of Theorem 2.2. The proof that u; Ll(R *, p) is similar to the proof of

Theorem 4 of [8]. Namely, define G(¢) = e 7?9 and convolve both sides of (2.2) with
G(t) to obtain

4.1) uxG)+uxGrxA@)=f*G() (teR™).

Here, f * G(t) =, f(t —s)G(s) ds for t € R". Integrating the first term in (4.1) by parts
enables us to rewrite (4.1) as

(4.2) u()+u*b(t)=k(t) (te R,

where b(t)=G'(t)+ G « A(t) and k(¢#)=f* G(t)+u(0)G(t). Equation (4.2) may be
rewritten as

(4.3) u*B(@{)=k(t) (teR™),
where B e V.[p] is defined by B(¢t)=J(¢)I + [, b(s) ds with J(¢) as defined in (3.3).
Since H(G, j, p) and H(G', j, p) are satisfied for j=1,2, - - -, it is easy to check that

H(B,2m, p) and H(k, m, p) follow from H(A, 2m, p) and H(f, m, p), respectively.
Also, it follows from the definitions of B and b that B(z)= G(z)[z] +A~(z)] for
Re z = py. Since G(z)=(z+1 —po) ‘I, we see that det B(z) and det [zI+A~(z)] have
the same zeros with identical multiplicities in Re z = po. In addition, the discrete and
singular parts of B are hg(t) =J(¢)I and sp(t) = 0, respectively. Hence, B(t) satisfies
hypotheses (2.4) and (2.5) of Theorem 2.1. Thus, we may apply Theorem 2.1 to see that
u(t) has the form (2.6) with u; € L'(R", p).

It remains to show that u(t)e L'(R™, p), To do this, set w(f) = Z,.Ail w;(t) where
the w;(t)=p;(t) e*" are the terms appearing in the sum in (2.6). We begin by showing
thatfor 1=j=M,

(4.4) w}(t)+j w;(t—s) dA(s)=0.
0

In order to verify (4.4), we first observe that an examination of the proof of
Theorem 2.1 yields that the polynomials p;(¢) are given by

m;—1 m;

G (r=k=1),k
(4.5) pi(t)= kZO R %H k= 1)'k'[k(z) adj B(2)]Y25 V%,

where

m

Z crilz—2z)""
is the principal part of [det B(z)] ' at z = zj. An easy calculation using the binomial
formulaon (¢ — s), the formula for the derivatives of A(z) (4.5) and interchanges of the
orders of summation yields that the left side of (4.4) is given by

m—1 m;

S Y (/I e S(r 1),

1=0 r=1+1
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where

r—1 - - -
S(r,)= % [(r=1-k)(k=D"'[k(2) adj B(2)]" ' [l + A(2)]*7").—,

k=1

For each r and [ satisfying [ + 1 =r = m;, 0= = m;, Leibnitz’s formula may be used to

rewrite S(r, [) as

[(n—1-D1""[k(2)(adj B(2))(zI + A(2))]¢=:"
=[(n—1-1)1"'[k(z) adj G(z) det (zI + A(2))]=2 "

where the equality follows from the expression for B(z) and a basic property of
adjoints. Since 0=r—1—1I=m;—1 and z, is a zero of det[z] + A(z)] of order m,, the
last expression is zero for each r and /, and (4.4) holds.

To complete the proof that u’e L'(R", p), note that (4.4) and linearity yield

’

(4.6) w'(t)+w f:A(t)=—J’co w(t—s) dA(s).

Thus, if we substitute the expression (2.6) into (2.2), rearrange and use (4.6), we find
that

W0 =f = x A+ [ wie=5) dA(s)

a.e.on R™. A calculation similar to that in (3.21) shows that the third term on the right
side of the last equation belongs to LY(R", p). Since f(¢t) and u, x A(¢) also are in
L'(R", p), it follows that u} e L'(R", p), and the proof of Theorem 2.2 is complete.

5. Proofs of Theorems 1.1 and 1.2. In this section Theorems 1.1 and 1.2 are
deduced from the results of § 2.

A. Proof of Theorem 1.1. Let J(t) be the unit step function defined in (3.3) and put
A@)=J (I +[,B(s)ds (t€ R"). Then (1.1) may be written as

r+A(t)=B(1) (teR™).
This matrix equation is equivalent to the » equations
r,*A(t)=B|(t) (i=1,'-',n,t€R+),

where r; and B; denote the ith rows of the matrices r and B, respectively.

Since B(t), *"B(1)e L'(R", p), it follows that r™B(f)e L'(R", p) and that
H(A, 2m, p) holds. Moreover, det A(z) =det [I + B(z)] for Re z =0, and both (2.4)
and (2.5) hold. Thus, by Theorem 2.1, fori=1,-- -, n,

M .
n(=X pi e +ralr)  (teR"),

where, for each j, p}(t) =( p}l ), -, p}n (¢)) with each p}k (¢) a polynomial of degree at
most m,; — 1 which depends only on A and B;, and the row vector r;;(f)e L'(R™, p).
Theorem 1.1 follows upon taking P;(¢) and r;(t) to be the matrices with ith rows p}(t) and
ri1(2), respectively.

B. Proof of Theorem 1.2. Equation (1.2) may be written as

(5.1) R'(t)+R+A(1)=0 (R(0O)=LteR"),
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where A(t) =—J(t)sf —[; B(s) ds (t€ R") with J(¢) defined in (3.3). The matrix equa-
tion (5.1) is equivalent to the n equations

(5.2) Ri(+Ri*A(N=0  (R(0)=I,teR"),

where, for each i=1, - - -, n, R; and I; denote the ith rows of the matrices R and I,
respectively.

It follows from r*"B(f)e L'(R"*,p) that H(A,2m,p) holds. Furthermore,
det[zI + A(z)]=det[zI — o — B(z)] for Re z = 0. Thus, we may apply Theorem 2.2 to
each of the equations (5.2) to find that R (¢) satisfies (1.11) with r(¢) and r,(¢) replaced by
R(t) and R;(2), respectively, and with R,(¢) and R (¢) both in L'(R™, p).
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THE PRODUCT FORMULA AND CONVOLUTION STRUCTURE
FOR THE GENERALIZED CHEBYSHEV POLYNOMIALS*

THOMAS P. LAINEt

Abstract. The generalized Chebyshev polynomials T(,,""ﬂ) (x), a, B> —1, are the polynomials orthogonal
on (-1, 1) with respect to the weight function (1 — x?)*|x[***! and normalized by T™*’ (1) = 1. We show that
for certain (e, 8) the product formula

1
Tﬁ,"’B)(x)T(,,“’B)(y)=J T (z) dm,,(2), —1<xy<1, n=0,1,2,-",

holds, where w,,, is a real Borel measure which is independent of n, and explicitly determine u, ,. We also
completely determine the set of («, B) for which the product formula holds with u, , quasipositive; i.e.,

1
J |d/.¢x,y(z)|§IV!, -1<x,y<1,
-1

where M does not depend on x and y. For certain (a, B), .,y is absolutely continuous and so can be expressed
in terms of a kernel k(x, y, z; a, B); in this case we further determine for which (a, B) k(x,y,z;a,B)
is nonnegative for —1<x, y, z<1.

As an application, we show that a positive or quasipositive product formula allows the construction of a
convolution structure for expansions in generalized Chebyshev polynomials.

1. Introduction. The generalized Chebyshev polynomials 7% (x), a, B >—1, are
those polynomials normalized by T® (1) =1 which are orthogonal on (-1, 1) with
respect to the weight function (1—x?)*|x|***"; that is, they satisfy

1
(1.1) j T () Tw? x)(1-x*)*x[**" dx=0, n#m.
-1
The results of this paper concern the product formula

1
T8 () TP () = J TSP (2) dpa,y (2),

(1.2)
-1<x,y<l, n=0,1,2,---,

where u,,, is a real Borel measure (which depends on «, B, x, y but not on n). If u, , is
absolutely continuous and

du‘x,y(Z) = k(x’ ¥, Z;a, B)(l _22)0"2'23_1 dZ,
then (1.2) becomes

1
13) TP T (y) = j T? (2)k(x, y, z; @, B)(1 = 2°)*[z[*** dz.
Notice that if there is an integral representation of the form (1.2) or (1.3), then by virtue
of the completeness of orthogonal polynomial systems on finite intervals, the kernel or
measure is unique (k(x, y, - - - ; @, 8) to within a.e. equivalence).

We will show that (1.2) holds for certain (@, 8) and explicitly determine the
measure u,, ,. Moreover, we completely determine the set of (a, 8) for which (1.2) holds

* Received by the editors March 7, 1979.
+ Department of Mathematics, University of Alabama, University, Alabama 35486.
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with the measure quasipositive; i.e.,
1

(1.4) J |duyy (2)| =M, —-1<x,y<1,
-1

where M is independent of x and y. We also completely determine those («, 8) for
which (1.3) holds with a positive kernel; i.e.

(1.5) k(x,y,z;a,B8)=0, -1<x,y,z<1.

Setting n =0 in (1.2) and using To(x) =1 shows that positivity implies quasipositivity.
Our main results are given in Theorems 1 and 2 below.
THEOREM 1. Leta,B>—1and —1<x,y,z2<1, z #0.
(i) Ifxy#0and a =B, a+B>~1orifxy #0, x*+y>*#1 and a =B, a > —3,
then (1.3) holds with k(x, y, z; a, B) defined by (3.1)-(3.3) below.
(ii) Ifxy =0and a > B, then (1.3) holds withk(x, y, z; a, B) defined by (2.3), (2.4),
(2.6) and (2.7) below, while if « = B and x =0 or y =0, (1.2) holds with o,y or u.o the
discrete measure with half-unit masses concentrated at z =<'1—y* and z = —/1— y2 or
z=V1—-xandz=-vV1—x , respectively.
(iii) Formula (1.2) holds with .., quasipositive ifa ZB, a +B>—1 ora =B = —3.
(iv) Formula (1.3) holds with k(x,y,z; a, B) =0 if

a>B§_%a

or if

v
v

azfz-3 a#*-3 xy#O0.

W) Ifa=B=-3, W,y IS the discrete measure such that (1.2) takes the form
(1.6) T, (cos 8) T, (cos ¥) =3 T, (cos (8 —¥)) + 5T, (cos (8 +¥)).

These results are the best possible in the sense of

THEOREM 2. Leta, B>—1.

() Ifa<Bora+B=-1 and (a, B) # (—3, —3), then there does not exist an M
independent of x and y for which (1.2) and (1.4) hold.

(i) If a<B or B<—3% and k(x,y,z;a,PB) is defined by (3.1)-(3.3), then
k(x,y, z;a, B)<O0 for some —1<x,y, z<1 with xyz #0.

In the concluding section, we show that for those (a, 8) for which (1.4) or (1.5)
hold, formulas (1.2) and (1.3) give a convolution structure for expansions in generalized
Chebyshev polynomials.

These results are related to and rely in part upon Gasper’s [4], [5] results on the
product formula for the Jacobi polynomials P (x), by virtue of a connection between
the two sets of polynomials. If

PP (x)

1.7 R (x) =—Fgr
(1.7 ko (x) cha,B)(l)

=F(-k,k+a+B+1;a+1;3(1-x)),

then the T (x) are given by

R&P(2x%-1) it n =2k,

1.8 TP ={
(1.8) (x) xRV (2x2-1)  ifn=2k+1.
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This follows from the orthogonality relation of the Jacobi polynomials,
1

(1.9) j REP (RSP (x)(1-x)*(1+x)?dx =0, n#m,
-1

by means of the change of variables x = 2z°—-1.
If B = —3, we have the additional relation

C:Hm (x) n! a+1/2
C:+1/2 (1)_(2a+1)n Cn (X),

(1.10) T (x)=

where C) (x), A > —3, is the Gegenbauer polynomial of degree . This follows from the
quadratic transformations [7, p. 59]

RSV (x)=Ri™V?(2x7 - 1),
RS (x) = xR (227 - 1).

A special case of (1.10) is

(1.11) TS Y2712 (cos §) = T, (cos 0) = cos né,

where T,,(x) is the Chebyshev polynomial of the first kind.

There are some important differences between the T® (x) and the Jacobi and
Gegenbauer polynomials, despite these relations. Notice from (1.8) that TP (x) is
even or odd according as # is even or odd, which is true for the Jacobi polynomials only
in the Gegenbauer case a = 8. Also, unlike the classical orthogonal polynomials, the
weight function for T (x) has a zero (if B > —3) or a singularity (if 8 < —3) within the
interval of orthogonality.

Moreover, Theorems 1 and 2 reflect some unexpected differences from the Jacobi
case. For Gasper [5] has shown that the product formula for Jacobi polynomials holds
with a positive kernel if and only if

azfz-3 or a+Bz0, -1<B<-3

and that quasipositivity holds if and only if a +8=~1, a >B>—1, a >—13; these
regions are larger than in our case. Furthermore, the singularity or zero of the weight
function for the T™® (x) is manifested in a singularity in the kernel when x =0 or y = 0.

2. A relation between kernels. Gasper [5] has derived an explicit formula for the
kernel K (x, y, z; @, 8) in the product formula

1
@1 REPWREVG)= [ REV@K(y, 25 a B)(1-2)" (1+2)" dz

and has shown that (2.1) holds, for —1<x,y,z<1,if a=Z8>~-1, a+B8>—1 or if

a=-3, a+B=-1, x #y. Using this result, we shall first show that for a =8 +1, (1.3)
holds with k(x, y, z; a, B) given by

2.2) k(x,y,z;0,8)=2""P"1[K(2x*~1,2y*-1,22>~1; a, B)
' +2xyzK (2x°—1,2y*~1,22°~1; a, B +1)]

if —1<x,y, z<1,xyz #0, and later show that (2.2) can be extended to a larger region in
the («, B) plane.
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To prove (2.2), replace x with 2x*—1 and y with 2y>—1 in (2.1), change variables
by z = 2¢%>—1 and use (1.8) to obtain

TSP ()T (y) =REP 2x* - DREP 2y* - 1)
1
=2“+3*2I TSP (DK (2x%=1,2y°—1,2~1; a, B)
0
. (1_t2)at23+1 dt
1

=2 [ TP (0K (2x*-1,2y*-1,27~ 15 0, B)

-1

(1=t .
Clearly,

1
2xyj TSP (0K (2x2—1,2y2— 1,261, B+1) - (1= )| de =0,

since the integrand is odd. Hence when n is even and a =8 >—1, (1.3) holds with
k(x,y, z; a, B) defined by (2.2).
Similarly,

TSE (OTES () = xRS 26"~ DREP 2y - 1)
e tB3yy Ll REP™ 2P -1DK(2x°~1,2y° 1,20~ 10,8 +1)
(1= |e2E2 g
=B I T5A (0xyK 2x°=1,2y*=1,20 ~ 150, B +1)

. (1_t2)alt|23+1 dt,

and again by the oddness of the integrand

1

j TS, (DK (257 —1,2y7— 1,202 1; o, B)(1— )|t = 0.
-1

Hence (1.3) holds for all » with k(x,y, z; @, B) given for —1<x,y,z<1 and
xyz #0 by (2.2) if a>B+1>0. In § 5 we will show that (2.2) can be analytically
continued so as to hold for other (a, 8).

The restriction xy #0 in (2.2) is necessary because the case x =0 or y =0 in
k(x,y, z; a, B) corresponds by (2.2) to the case x =—1 or y =—1 respectively in
K (x,y, z; a, B). However, although this was not mentioned in [5], fora > 8 > —1, (2.1)
holds if for example x = —1 with

[(a+1) (—y-z)**"
F@B+DM(e-p) (1-y)*(1-2)*

23) K(1,y,z;a,B)= if-1<z<-—y

and

2.4) K(-1,y,z;0,8)=0 if-y<z<l1.
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This follows, as in [1, p. 31], from

P(a-—mBﬂL)(y)

(1+Y)B+MW‘W
_T(B+u+1) Iy s PiP(z) et ~
YCEE Y (1+2) Pf,"’B)(—l)(y z)"7 dz, u>0, -1=sy<1

which is (3.4) of [2]. Just set u =« — 3, use
PP (y) =P (=R (-y)
and then replace y with —y to get

1
REP(DRED0)= [ K(-1,y, DRED @)1=+ 2,
-1

(2.5)
-l1=sy<], a>p>-1,

with K(—1, y, z) given by (2.3) and (2.4). The case y =0, of course, can be dealt with by
symmetry.

Hence, by an argument similar to that used to prove (2.2),if xy =0and -1<x, y <
1, (1.3) holds with

(2.6) k(0,y,z;5a,B)=2"""""K(-1,2y*~1,22°~1;a,8), —1<y,z<1,
(2.7) k(x0,z;a, B)=2""""K(-1,2x*-1,22°-1;a,8), —1<x,z<1,

where K(—1,y, z; a, B) is given by (2.3) and (2.4) and a >8> —1.
On the other hand, since T (=y) = (-1)"T'*® (y) and

R ()R (2y>— 1) = R& (1-2y7),

it follows that if « =8 and x =0, then (1.7) holds if w,,, is the discrete measure with
half-unit masses concentrated at v1—y“ and —~v1-— y%. Similarly if y = 0.

This completes the proof of Theorem 1 (ii). Since the statements about positivity
and quasipositivity in Theorem 1 (iii) and (iv) for the case xy = 0 are now obvious from
(2.6),(2.7),(2.3), and (2.4) and the remark above, we will henceforth assume that xy # 0
(aswell as—1<ux, y,z<1, z#0).

Because of (1.11), (1.6) is just the identity
cos ne cos n¥ =3 cos n(¢p —¥)+5cos n(¢p +¥)
and so we may also assume that a and 8 are not both —3.

3. Thekernel k(x, y, z; @, B). Supposing, as we now may, that —1 <x, y, z <1 and
xyz #0,let0< ¢, ¥, 0 < /2 and set cos ¢ = |x|,cos ¥ =|y|, cos § =|z|, a =sin ¢ sin ¥,
b=cos ¢ cos ¥V, ¢ =cos 6,

_ b*+c*-a?

2bc
Then0<a, b, c <1and2x>—1=cos 2¢, 2y2— 1=cos2¥,2z°—1=cos 26 and |xyz|=
bc. Thus, using the expressions [5, (3.3)-(3.5)]for K (x, y, z; a, B), it follows from (1.10)

B
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that if |a —b|<c <a +b, then
T(a+1)a>*(1-c*)"*(bc)* *'1-B*>* ">
2I(a +3)T ()
[F(a—B,a+B;a+33(1-B))
+sgn (xyz)F(a—B—1,a+B+1;a+3;3(1—B))]
_Da+Da(1-c*)"(be)* " '1-B)*"""2
2827 T(a +2)T() ’
(3.1b) [FG+B,7—B; a +3;3(1—B)) +sgn (xyz)FG+ B, =1~ B; @ +3;3(1-B))]

if c <a—b, then

k(x,y,z;a, B)=

b

(3.1a)

Ta+1a*(1-c*)(a*=b*=cH)* P '1-B 3> W?

Kz )= M- BB +2) ’
[(B+1)F(%(a +B),Ma+B+1); B+1;B7)
~sn (92) E LV Fd(a+p 1), da + 842,842,879

3.2
G-22) _Dla+Da(1-c*)"(a’~b*~c*)**""

Tla—B)(B+2) ’
52 [6+VFGB-a+1),3B-a+2;8+1;B7)

—sn (02 LV pda-a+2), 36 -a +3; 842,87

and if either c<b—a or ¢ >a + b then
3.3) k(x,y, z;a, B)=0.

The kernel is defined to be zero if ¢ =|a £ b|.

The two expressions for the kernel in each of (3.1) and (3.2) are related to each
other by means of the transformation ([3, p. 105])

(3.4) F(A,v;8;x)=(1—-x)""*""F(8-A,6—1v; §).
For certain o, 83, k(x, y, z; a, B) reduces to an elementary function. In particular, if
a—b<c<a+b, then
T(e +1)a >*(1—c*)"*(bc)**(1—B*)*"*(B +sgn (xyz))
2T (e +2)I'(3) ’
T(a+1)a>**(1—c?)"*(bc) '(1-B>** (1 +sgn (xyz)B)
2I'(a +H)I'(3) ’

(3.5) k(x,y,z;a,—a—1)=

(3.6) k(x,y,z;a,a)=

and if ¢ <a — b, then
(3'7) k(x’ Y,z a, _a_l)

T(a+Da**(1-c®)(a’-b>-c»**(1-B** (1 +sgn (xyz)B™")
- I2a +1)I(~a) ’

(3.8) k(x,y,z;a,a)=0.
Formulas (3.5)—(3.8) follow from (3.1a) and (3.2a) by virtue of F(0,v;8;x)=1,
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F(-1,y;8;x)=1-(y/8)x and
1 _a—B
Fa—-B) T(@-B+1)

4. Positivity of k(x, y, z; @, B). In this section we prove that k(x, y, z; a, B) as
given for a # —%and xyz #0 by (3.1) to (3.3) is nonnegative if and only if a =8 = -1
a # -%.

We first show that k(x, y,z;a,B8)=0if a=B = —3%, a #—3. Since this is clear for
the case a = B from (3.6), (3.8), and

4.1) —-1<B<1 ifla—-b|<c<a+b,
4.2) B<-1 ifc<a-b

which are easily verified, we can assume a > 8. We consider the cases |a —b|<c<a+b
and ¢ <a — b separately.

L la—-bl<c<a+b. By (4.1) and 0<a, b, c <1, the function multiplying the
bracketed hypergeometric functions in (3.1) is positive, provided a > —1. So for
a>B= -5 k(x, y, Z; a, B) will be nonnegative provided
(43) F(a-B,a+B;a+3 W)+sgn(xyz)Fla—B-1,a+B+1;a+3; W)
is nonnegative for 0= W =3(1-B)<1.

Taking the cases sgn (xyz) = #1 of (4.3) separately, we have

Fla—B,a+B;a+5 W)+F(a—-B-1,a+B+1;a+5 W)

(4.4) .
=21-W)F(a—B,a+B+1;a+3;, W),
@.5) Fla—B,a+B;a+5 W)—Fla—-B-1,a+B8+1;a+5 W)
' _28+1 ~ o
——a+1/2WF(a B, a+B+1;a+3; W)

Formula (4.4) follows from [3, 2.8, (37)] and (4.5) may be proved by comparing the
coefficients of powers of W.

Since the nonnegativity of the right-hand sides of (4.4) and (4.5) is obvious for
a>B§—-%, 0= W <1, we are done.

II. c < a—b. By (3.2b) and (4.2), k(x, y, z; a, B) is nonnegative for these x, y, z if
hw;a, B)=(B+DFGB-a+1),3B-a+2);8+1;w?)
+3(B—a+DWFGB—a+2),3(B-a+3); B+2; w’)
is nonnegative for —1 <w < 1. We divide the region a > 8 = —1 into two subsets.

(A) 0=B—a+1<1,8> —1. Notice that the second hypergeometric function on
the right-hand side of (4.6) is positive. Hence for —1 <w <1 and « and 8 in this region,

(4.6)

h(w;a, B)Z(B+1DFGB—a+1),35(B—a+2); B+1; w’)
—3B—a+1)FG(B—a+2),3(B—a+3);B+2;w?)
=3a+B+1FG(B—-a+1),3(B—a+2); B+2; w?)
=0,

where we have used the contiguous function relation [3, (2.8), (3.5)].
(B) B—a+1<0,B>—3. To show h(w;a, B)=0 in this region, it suffices to
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consider the case 0<w <1 since B8 —a+1<0 and, by (3.4), both hypergeometric
functions in (4.6) are positive. In this case we have to use a different method, which
relies on Bateman’s integral ([3, 2.4, (2))),

_ I'c+w)
[(e)l(w)

if u>0,c>0, and —1<x <1. Also, we need the quadratic transformation

1
4.7) F(a,b,c+pu;x) j Yy ' (1—-y)*"'F(a, b; c; xy) dy
0

(4.8) Fly, y+5:5 x)+2yxF(y+3, v+ 1,1 x)=1-x)">

which follows from [3, 2.11, (3) and 2.3, (4)]. If B = —3, then by means of (4.8), (4.6)
becomes

h(w; a, =3 =31-w)*""?, -l<w<l,

SO we may assume 3 > —%.
Setting a =3(B—a+1), b=3(B-a+2), c=3 u=B+3 and x=w?in (4.7) and
making the change of variables y = z° gives
2I'(B +1)
(B—a+1),5(B—a+2);B+1;w)=—"———1
F(Z(B a )’ Z(B a 2)’B la w ) F(ﬁ‘*‘%)r(%)
(4.9)

1
: J' (1= 2P PEGB—a+1), MB —a +2); L w?2?) dz.
0

Similarly, setting a =%(B —a+2), b= %(B —a+3), c=3, uw=p +3, and x =w? and
making the same change of variables gives

1 1 2I'(B +2)
FGB - , 2\ — 5 5 5= I\~ 3
GB—a+2),3(B—a+3);B+2; w") TE+Hro
(4.10)

1

2Z21-22f "V’ FGB —a+2),5(B —a +3);3; w’z?) dz.
0

Hence, by (4.6), (4.9), and (4.10),

2T (B +2) ! 212
. = 1—

h(w; 0, B)=—o S L( 2%
FG(B-a+1),5(B—a+2);5; w2
+(B—a+)wz’FGB-a+2),3(B—a+3); 3 w’z?)]dz

“.11) _ 2I(B+2)

1
__2\8-1/2
=F(B+%)F(%)~[> (1=27
[FGB—a+1),35(8—a+2);3;w?2?)
+(B-a+D)wzFGB—a+2),3(B—a+3);3; w’z?)] dz,

since z°<z for 0<z<1, B—a+1<0, and, by (3.4), the second hypergeometric

function in the integrand is positive. Then (4.11) and (4.8) with y =3(8 —a + 1) give
2 (B +2)

T(B+2rG)

for a >pB > —1 as required.

1
hiw;a,B)= j 1-zH"121-wz)* *'dz =0
0
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This completes the proof of Theorem 1(iv). Since we will show in §5 that
quasipositivity, and thus positivity, fails if 8 >a or a + 8 <—1, to prove Theorem 2(ii) it
suffices to show that positivity fails for —1 <8 < —3, @ > —3, a + 8 = —1. But this is clear
from (4.5).

5. Analytic continuation. Here we show that the integral representation (1.3)
holds with k(x,y, z; @, B) given by (3.1)-(3.3) for a,8>-1 and —1<x,y,2<1,
xyz #0 if

az=p, a+pB>-1,
or if
az=B, a>-3 and x*+y’#-1
and show that it fails on the part of the boundary of these sets excluded above.

If 5 is fixed and s <1, then F(A, y; v; 5)/I'(v) is an entire analytic function of v, A,
and ». It therefore follows from (1.7), (1.8), and (3.1)-(3.3) that, for fixed x, y, z,
T™? (x) and k(x, y, z; a, B) are analytic functions of the complex parameters «a, 8 for
Re (@) > —1. Hence the extension of (1.3) to the desired regions can be accomplished by
an analytic continuation argument. Since the required argument is a simple
modification of the analytic continuation proof of [5], we omit the details.

The integral representation (1.3) fails, however, on the line segment a +8 =—1,
—3<a<0if x*+y®=1. In fact, on this segment,

T ()T (2V1-x7)

(5.1) 1
=3T'> P (0) - j T (2)k(x, +V1-x% z; 0, —a — 1)1 - 2%)%|z| > dz.
-1

To prove (5.1), note that if n =2k, (5.1) becomes

Ria,—a—l)(2x2_ 1)R(a.—a—l)(1 _ 2x2)
1

=3R&*7V(1) j R V22— 1)K(2x2-1,1-2x%2z> 1,2, —a—1)

-1
. (1 _22)0112[—201—1 dz
which, after a change of variables, is just [5, (6.4)]. If n =2k + 1, then (5.1) becomes
Rgca,—a) (2x2 _ 1)R§(a,—a) (1 _ 2x2)

1
=2I RE™¥ (222 -1)K(2x°—1,1-2x%,222-1; a, —a)(1-2°)%|z|' " dz
-1
or, after a change of variables,
1
(5.2) R ((x)R&™™ -—x)=J R (K (x, —x, z; a, —a)(1—2)*(1+2) *dz
-1

for —3<a <0. Now (5.2) is (2.1) when a + 8 = 0, which is stated in [5] for & > 0. Since
by [5, (3.3)~(3.5)], the integral on the right-hand side of (5.2) is
F(a+l)a—IIZa (cma) ) [ C2 ]a—l/Z
A — o _ 1 —_——
Mathr@ ), B G- lgz] 4o

(5.2) can be analytically continued to « > —3, completing the verification of (5.2).
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Finally, we note that u,,, is also not absolutely continuous on the half-line a = —3,
B>—1,evenif x>+ y* # 1. This follows from [5, (6.13)] which in terms of our definitions
of a, b, and c is

Rf._l/z‘m (2x2 1R ;—1/2.{3)(2})2 -1)

_ B+1/2
=%(_” =) RO @b-al-1)

(5.3)
1 + B+1/2
+5(“ ; b) RG22 (2l +b-1)
a+b
+%(%—Bz)ab_3_3/2j c?21+B)'RTVP (2¢7 - 1)
b—a

-FG—B,5+8;2;5(1-B)) dc

for-1<B<-3, x%+ y2 >1 (i.e., b > a). For then by analytic continuation, (5.3) can be
extended to 8 > —1, and so by an argument similar to that used to prove (2.2), we have
that for —-1<B<—3and x> +y>>1,

T(—I/Z.B) (x)T(—1/2.B) ()’)

1/b—a\?*V?
=5( 5 ) TS V*® (sgn (xy)[b—al)

1/b+a\P*V? _ _
5( . ) T V> (sgn (xy)[b+a))

+5ab P j lel®2(1+[B) TP (o)
E

AG-BFG—-B,2+8;2;2(1—|B))
+sgn (xyc)[F— (B+1)°1F(-3—B,3+8; 2; 5(1—|B|)} dc
where E=(—a—b,a—b)U(b—a, a+b). If B=—3, (5.4) reduces of course to (1.6).

6. Estimates for k (x, y, z; a, B). Here we show that u, , satisfies (1.4) if and only if
a=B= —2% (which follows from (1.6)) or

6.1) a=pB>-1, a+B>-1.

Except for the exclusion of the line segment a +8 =—1, —3<a <0, (6.1) is the same
region for which quasipositivity holds for the Jacobi polynomials, as in [5]. In view of the
results of [5], w,, is absolutely continuous in the region (6.1), with du,,=
k(x, y, z; a, B) as given by (3.1) to (3.3). Hence, to show that u, , is quasipositive in the
region (6.1) it is enough to show that

a+b

(6.2) VlEJ lk(x, y, z; , B)(1—c*)*c*** de =M,
la—b|

(6.3) V>

a—b
J lk(x,y, z; 2, B|(1—c*)*c*** de =M
0

with z =c¢ or —c.
The proof of quasipositivity for much of (6.1) is virtually identical to that in [5] for
Jacobi polynomials. In fact, in (3.1) and (3.2) the functions multiplying the quantities in
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brackets are the same as the functions multiplying F’s in the expressions for the Jacobi
kernelin[5, (3.3) and (3.4)]; the weight function expressed in terms of ¢ is also the same,
ie., (1—c?»)*c*®**'. Moreover, using (4.1) and (4.2) and the fact that F(A, y; v; w) is a
continuous function of w for 0=w =1 if Re (v —A —y) >0, it is easy to check that the
quantities in brackets in (3.1) and (3.2) are bounded by a constant independent of a, b
and c for exactly the same a, 8 as the F’sin (3.3) and (3.4) of [5]. Thus as this is the only
property of the F’s that is used there to establish quasipositivity for the regions

(6.4) a+B> -1, —i<a<j, -1<B< -3,
(6.5) a>+3, —1<p<-3,
quasipositivity follows in our case in exactly the same way, and we do not repeat the
proof. Also, the estimate used in [5] to deal with the case
(6.6) a=3  —1<pB<-3
namely
PR yiA+y;s) TA+y)
s-1 log[1/(1=s)]  T)I'(y)

applies in exactly the same way to our case for the set (6.6).
The remaining subset of (6.1),

(6.7) azZBz=—-3  a>—3

is easily disposed of by virtue of the positivity of k(x, y, z; a, B8) for a, B8 in (6.7). For, as
T8 (2)=1, setting n =0 in (1.3) gives

1
I lk(x,y, z; @, B)(1—2%)%|2|**" dz =1.
-1

To verify that (1.4) fails outside the region (6.1), we shall consider
(6.8) a<pB,

(6.9) B=a< -3,

(6.10) a+B=-1, —3<a<0,

(6.11) a+B<-—1, —3<a<0, B>-1,
(6.12) a=-3 —-1<B<-3.

For (6.8) and (6.9), observe that if (1.2) and (1.4) hold, then setting
r,=max {|{ T (x)|:-1=x=1}
it follows that r2 = Mr,; i.e.,
(6.13) rm=M.
But from (1.7),
ran =max {{ RSP (x)|:-1sx=1}
and so, as in [5],

(B + l)n _ nB—a

ran ZIRS® (1) = (a+1)
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and
—a—1/2
ram=Mn V2 B=a< -

which contradicts (6.13).

In the case (6.10), suppose that (1.4) held. Then, since the integral representation
(1.3) holds in this case if a # b, we would have V; =M for a # b and so, by Fatou’s
lemma, for a = b as well. But B =c(2a)"' when a = b and so by (6.2) and (3.5)

=

2a 2

a—1/2
(6.14) v1=AI0 c_l(i:tl)(l—i%) de,  a=b.

But the integral in (6.14) obviously diverges, which contradicts V; = M. Therefore (1.4)
fails.

The argument is similar in the case (6.11). From (3.1) we have, much as in [S],

a+b
Vi=A[(a+3) la 2P J c*B(1-BH*?
la—b|

(6.15) {F(a =B, a+B; a+3;3(1-B))
+F(a-B-1,a+B+1;a+3 3(1-B))}dc.

Also ([3, 2.8, (50)]),

T(A+y+3)IQ)

Ay alily=
F(2A, 2‘)’,A ’Y+2,2) F(/\+%)F(’Y+%)

if A + 7 +3 is not a negative integer or zero, so the sum of F’s in (6.15) is bounded away

from zero as ¢ > 0. Hence the integral in (6.15) diverges when a = b. Since the integral

representation holds for (6.11) if a # b, Fatou’s lemma then again shows that (1.4) fails.
Finally, failure of (1.4) in the case (6.12) follows from (5.4), since if 8 < —3,

b—a B+1/2
( b ) >0 asb->a+.

7. Applications. In this section, we show that Theorem 1 gives a convolution
structure for the generalized Chebyshev polynomials. This convolution structure allows
the extension to generalized Chebyshev expansions parts of Fourier analysis which
cannot be extended to orthogonal polynomial expansions in general. As a related
application we also prove the positivity of the generalized translation operator. For
other applications, see [4], [5].

For a, B >—1, let L*® denote the class of measurable functions f(x) on (=1, 1) for
which the norm

= | 1wl dx

is finite The transform fA of a function in L{™® is defined by
1

P = AT (0 —x)e | d

-1

Then f has the expansion

f)~ 5 (P T (x),
n=0
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where
1 -1
w0 = ([ 17 @Pa -l ax)
-1
Rk+a+B+1)Itk+a+B+1)'(k+a+1)
MNk+g+1)I'(k+DINa+DI(a+1)

Rk+a+B+2Mk+a+B+2)(k+a+1)
I'k+B+2)I'(k+1DI(a+ I (a+1)

if n =2k,

ifn=2k+1.

If « =B, a + B8 > —1, we define the convolution f * g of two functions f, g € L$® by

1 1
(7.1) (f * g)(x)= fg) A=y |y PP dus,y(2) dy.
-1J-1

Also, let || fllo be the sup norm. Then, as in [6] in the Gegenbauer case 8 = —3, we have
the following corollary of Theorem 1(iii) and (iv):
COROLLARY 3. Leta =B, a+B>—1andf, g he L. Thenf* ge L\® and
@) |If * gl =Ml fllllgllss
(i) If * gllo < M| fllllgll1;
(i) frg=g*f;
(iv) (f*g) xh=f*(g*h);
V) (fxg)(n)=f (n)g (n), n=0,1,2,---;
with M =1 if @ = B> —%. Moreover, L, is a commutative semisimple regular Banach
algebra (with the norm || f|| = M||f|,) whose maximal ideal space is isomorphic to the space
{0, 1,2, - - - } endowed with its discrete topology.
If a =B >—3and fe L™, then following [4], we define the generalized translate
f(x, y) of f(x) by

1
fen)=| k(e y 20 B2 dz,  —1<xy<1.
-1

(Note that for —1<y<1, f(-,y)e L{®.) Then by Theorem 1(iv) we immediately
obtain

COROLLARY 4. Leta =B > —5. Then the operator which takes f € L into f(x, y)
is a positive operator in the sense that if f(x) =0, —1<x <1, then f(x,y) =0, —1<x,y <
1.

Note that if a =8> —1.(7.1) takes the form

1

(Fro)0= [ fm»g0)a=y "y dy
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DIMENSIONALITY REDUCTION METHODS FOR EFFICIENT NUMERICAL
SOLUTION, BACKWARD IN TIME, OF PARABOLIC EQUATIONS
WITH VARIABLE COEFFICIENTS*

PAOLO MANSELLIt anp KEITH MILLER®

Abstract. We review several general purpose numerical methods for the ill-posed problem of solving a
parabolic equation backward in time. Most of those methods are applicable only to the case of constant
coefficients or else suffer from greatly excessive computational and storage requirements. For the general
problem with variable coefficients we instead propose certain modifications of known least squares methods
and eigenfunction expansion methods. Numerical trials show, as expected, a dramatic reduction in the
number of elements required in our ‘“approximate basis’’ for the space of initial functions.

1. Some previous methods. We wish to develop efficient methods for the problem
of approximately determining the solution u(x, t) of a linear parabolic equation when
data g for u is given not at the initial time ¢ = 0, but at a later time ¢ = T > 0. That is, let u
be an exact solution of

(@) U =Y Qijlhxys, X by, +cu  in QX[0, 00),
i i

(1) (b) u=0 onaNx[0, ),

(¢) u(x, T)=g(x), agivendatafunction.

We assume here that Q is a bounded domain in R" with sufficiently smooth boundary
and that the coefficients a;(x, t), bi(x, t), c(x,t) are uniformly parabolic and fairly
smooth.

This ill-posed problem can be stabilized for times ¢ > 0 if it is known that the initial
function u(x, 0) satisfies a prescribed bound. Writing (1ab) as an ordinary differential
equation on the Hilbert space L*(), and the data accuracy and the prescribed bound in
terms of the L* norm, one has

u'=—L()u, fort>0,
(2) u(T)-gl=e,
[u(O)|=E,

with g in L*(Q), and ¢, E given. Let A denote the evolution operator which maps the

unknown initial value f=u«(0) into the final value u(T)= Af. The conditions (2) can
then be written:

3) lAf-gll=e,  Bf-Ol=E,

where B will denote the identity operator except where otherwise stated. It can be
shown now (for example by log convexity type arguments, see [1] and [9]) that the
problem of determining u(#) among all solutions satisfying the constraints (3) is stable.
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That is, as E is fixed and ¢ gets small, then the difference at time ¢ > 0 between any two
solutions u; and u, satisfying (3) is also guaranteed to be small (in the L? norm, the
uniform norm, or any other decent norm; the usual type bound is of the Holder form
O(*E' ™) with 0<A(r)<1).

In practice the parabolic equation (1) will usually be replaced by a finite difference
or finite element approximation on a discretization Q, of Q and A will then denote the
matrix mapping the discrete initial function ¢ =u(0) into the discrete final solution
A¢=u(T).

This problem is susceptible to application of certain general purpose numerical
methods for ill-posed problems devised by the second author and others. The problem
is that most of these methods, without modification, lead to computations of huge
dimensionality. For example, if () is the square in two dimensions, and (;, is a 60 X 60
discretization of Q, then A will be a 3,600 x 3,600 nonsparse matrix.

Let us mention very briefly some of these methods and their difficulties; for a more
extensive discussion see the symposium notes [11]. These notes also announce portions
of the present joint work.

Partial eigenfunction expansion. (See Miller [6].) Let ¢1, ¢, - - -, be a complete
system of “orthonormal eigenfunctions” which are simultaneously orthogonal with
respect to both A and B (here B is not necessarily the identity operator); that is

(Ag, A¢f) = (Ai)zaiia
(B, B¢i) = (Bi)25ii~
For example, if B is the identity, then the weights (B;)> will all be 1’s and the

functions ¢; and the weights (A;)* will be the orthonormal eigenfunctions and cor-
responding eigenvalues of the compact self-adjoint operator A"A. If

C)

5) f= ifm g= i gAd,

then (3) can be written

e o) 2 [e o]
a7 -8l = £ (i -804 =Zii-g)al=e?,
(6) 2 oo
I8f-0F =g (- 0)Bs|| =1 -0)B P =E.
Assume now that the eigenfunctions ¢, ¢,, - - - have been so ordered that the

ratios A;/B; are nonincreasing with respect to j. Then truncate our expansion of g at
exactly that order « just previous to where A;/e becomes <B,/E. Let ¢ =Y] gib;
denote that initial function obtained by this ath order eigenfunction expansion of the
data function g. Then it can be shown that:

™ |Ag* —g|=2e, |B&—0||=2E,

and hence £¢” is a “‘nearly best possible’” approximation to f, in the sense that £ satisfies
nearly the same “fit to the data” and “prescribed bound” as does f itself.

This is a pretty specialized method, because, except in certain special cases, we just
aren’t usually given the eigenfunctions of A”A, and they can be very difficult to obtain.
However, when they’re available, it is a very good method and should be used.

This method is computationally equivalent to the singular value decomposition
method introduced by Golub and Kahan [5] for the solution of ill conditioned matrix
equations Ax = b.
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Least squares. These and similar methods seem to have been discovered indepen-
dently by several authors; we mention Morozov [13], Backus [2], Miller [7], and also
Tihonov [14] and Bellman [3]; see [11] for a fuller discussion. See also the paper by
Miller and Viano [10] for an exposition of both expansion and least square methods.

Notice that the unknown initial function f from (3) satisfies:

8) lAf - gl +(e/ EYIIBSI = 26,
Thus, let our approximation £ be such that

© lAé - gl +(e/E)’|BEIP

is minimized, i.e., the solution of the least squares equation
(10) (ATA+(¢/E)’B™B)¢=A"g.

Since £ will also satisfy the claimed fit to the data and prescribed bounds (3) (except
for a factor of at most v2) this is alsoa nearly best possible method. Moreover, one can
compute exactly the best possible error bound for any linear functional of the solution.
The problem is that A, and hence ATA in (10) is horribly nonsparse. In this form,
therefore, the method seems totally impractical for multidimensional parabolic prob-
lems.

Stabilized quasi-reversibility. See Miller [8]. Suppose L in (2) is self adjoint, =0 and
constant with respect to . This method involves perturbing the equation (2) a bit,
replacing L in (2) by F(L), where F(A)is =A for small A, but is bounded above for large
A. One then solves the perturbed equation backward, to get an approximation v(¢) to

u(t):
v'=—F(L)v, t=T,
v(T)=g.

(11)

Then, if desired, solve the unperturbed equation forward with the initial value & = v(0)
so obtained to yield a solution w(¢). In this way we get some very efficient methods
which yield the best possible error bound [u(f) —v(¢)||=e”"E'"". The advantage of
this method is that F(L) can be taken to be a rational function that factors into its linear
(complex) or quadratic (real) factors above and below; hence each factor had a
sparseness pattern only little worse than that of L itself. The shortcoming of this method
is that it doesn’t extend well to very general L, and definitely not well to L(z).

The backward beam equation approach. See Buzbee—Carasso [4]. Once again, let L
be self-adjoint, constant with respect to ¢, and let T =1. Then y(t) =e*u(t), with
a =log (E/¢), satisfies:

@) y"=(L-a),
(12) ®) ly()—e’gl=ee”,
© |y©) -0|=E.

One then lets our approximation be v(t) = e *'w(t), where w(?) is the solution of
the two-point boundary value problem for (12) with w(1) = e¢“g and w(0) = 0. Because
the norm of any solution of (12) must be convex with respect to ¢, one gets the best
possible error bound &'E'” once again. The shortcoming here is that we have to
simultaneously solve for all time levels at once; it thus introduces one higher dimension
to the storage and computational difficulties. It does seem, however, that the method
extends readily to variable L(¢) (not with best possible stability) and perhaps even to
nonlinear equations.
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We would now like to propose the previously mentioned least squares methods or
eigenfunction expansion methods, but with some modifications, for the general prob-
lem with variable coefficients.

2. Reduced dimensionality for £ In a typical problem with smooth coefficients,
most highly oscillatory initial functions ¢ will damp out drastically by ¢ = T, so the space
of ¢ we need to deal with should be quite small.

Let ¢4, - - -, dn be an “approximate basis’’ for our space L*(Q) of initial functions
&; let Py denote the orthogonal projection onto their linear span; let Qn =1 — Py
denote the projection onto their orthogonal complement, and suppose that

(13) lAQN|=.1(¢/E).

Instead of (3), we have
lAPNf - gll=llA(Px — DA+ Af —gll=1.1¢,
IB(Pnpll=|IBf|= E;

i.e., the projection Py f satisfies nearly the same constraints as f itself; its high order part
Qnf just hardly enters into the “fit to the data” of f. Therefore, we can do the least
squares approach of (8)-(10), but with ¢ a linear combination of the ¢, - - -, ¢n only,
and with & replaced everywhere by 1.1e. The matrix in (10) is then only N X N and
involves only computing the solutions A¢y, - - -, A¢n and their inner products.

Alternatively, if N is not too large, one can apply the eigenfunction expansion
methods to the operator APy. This involves computing the eigenvalue and eigenvectors
of the matrix b; = (A, Ad;).

Notice that once we’ve guessed at a good ‘‘approximate basis’ it is possible to
check computationally whether |AQy/| is sufficiently small, since |AQ|” is the spectral
radius of QATAQ, which can be computed by the power method. This involves
computing high powers (QATAQ)"q,‘), where ¢ is any initial function (say ¢n.1) which
has a nonzero component of the dominant eigenfunction of QATAQ. Recall that A7 is
itself an evolution operator; it carries the initial value «(0)= ¢ into the final value
u(T) = AT¢ for the parabolic equation: u'=—(L(T —1))"u, 0st=T.

(14)

3. Conjecture and counterexample. Let’s consider several possible choices of the
approximate basis. Suppose, for example that our equation is u, = (a(x, t)u,), on the
one-dimensional interval [0, 7], with u(0, ¢) = u(, t) =0 and with a(x, ¢) uniformly
elliptic (i.e. uniformly bounded above and below by positive constants).

_ One good choice for ¢i1,--,¢n might then be the Fourier basis
V2 sin (1x), ¥2 sin 2x), -, V2 sin (Nx). If the coefficients a(x, t) (when a and u are
extended periodically across the end points by symmetric and antisymmetric reflection)

are sufficiently smooth (say C?), then the kernel function k for the evolution operator
A,

(15) A¢<x)=jo k(x, y)o() dy,

is known to be a smooth C?*? function of y, whose C 9*2 horm is bounded in terms of the
C“ norm of the coefficient function; hence integration by parts q + 2 times in (15) yields
that:

(16) lAdn-ill= ON2).

The same result would hold for the Fourier basis {2 sin (nx) sin (my)} in the case of the
square [0, 7] %[0, 7] in two space dimensions.
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A better choice might be to let ¢4, -+, dn; dn+1,* + - be the eigenfunctions of
L(0) (if these are easily available), since u’ = L(¢)u = L(0)u for small ¢. If u(0) is a high
order eigenfunction ¢~ 1 of L(0) then the solution ought to die out exponentially so fast
(initially at an e "™ rate) that it becomes very small before L(¢) can change much from
L(0). (We wish to assume here that the coefficients are not necessarily C* but merely
C? or so.) The authors originally had the following loose conjecture: that |[Adn 1] =
O(e™ M) at least, instead of merely O(N"?7%). We had a bit of computational
experience with a test program and our intuition appeared to be justified; the solution,
starting out in a high order eigencomponent (with respect to L(0) = 9°/9x?) did not seem
to diffuse very quickly into the low order components.

However, our intuition let us down, and analysis of the results for some anomalous
computer runs led us to the following counterexample.

Let u be the solution of the problem

17) u=(ax, uy)y onl0=x=nw, 0=t=1,
(18) u(,t)=u(m, 1)=0,

(19) u(x, 0) =sin (N +1)x) = ¢n+1,
with:

(20) a(x,t)=1—KtN"? cos (Nx)

where N=1 and g=1 are integers and 0 <K <1 is a sufficiently small positive
constant. It will be shown that

lAdnll=lu(-, DIz ON"3).

Notice that the coefficient a(x, t) has uniformly bounded derivatives of order ¢,
independently of N, and that the coefficient stays uniformly elliptic.

We treat the nonconstant part of the coefficient as a small perturbation, transfer it
to the right-hand side, and apply the method of successive approximations with the
initial approximant u® being the unperturbed solution e NV gin (N +1)x), and
with 4" solving

Kt
u G = ( 7 COs (Nx)u("))
N x

on 0 = x = 7, 0 =t with boundary conditions (18), (19). Notice that the 1st approximant

u® feeds a substantial increment of itself from the quickly decaying (N + l)st Fourier
component into the slowly decaying 1st Fourier component. We have u'" satisfying
(18), (19) and the equation

ul® —ul) = fu(®)(sin (1 - x) + (2N +1) sin (2N +1)x)),
where fx (f) = Kt(N +1) e ¥ *P*/(2N?). The solution is
u®P(x, H)=e NP gin (N + 1)x)

t
+J- fn(@le " sinx + (2N +1) e N2 g0 (2N + 1)x)] dr,

which has norm [u®PW)||z(#@/2) e fu(r) e ¥ dr=KN "9 (m/2) e (1 —e N =
NZ2e ™M)z O(N~%7?),

We now show rigorously that the norm of the true solution (1) is even larger than
the norm of its 1st order approximant u(1). For this purpose we transfer to an
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argument in terms of the Fourier coefficients {u;(¢)} of u(¢). Let X be the Banach space
of functions whose Fourier coefficients satisfy:

lollx =3 sup Jo;(6)] < co.
1 [0, 1]

Notice that the solution u of (17)-(20) is C* so certainly belongs to this space. One sees
easily that the Fourier coefficients of this solution ¥ must satisfy the integral equation

Kj

R R R P

t
J, 7¢I+ M)+ = Ny ()] i
Moreover one can show that the integral operator « corresponding to {-} on the
right-hand side of (21) is norm bounded on X by2K/N 9-! Therefore if K <3, then this
is a contraction mapping and hence the Fourier coefficients u'" (¢) of the method of
successive linear approximation converge to the Fourier coefficients u;(t) of the unique
solution u(x, t). On the other hand, the operator « is ‘“‘positive”, i.e. it maps positive

coefficients into positive coefficients. Thus coeflicients of approximants are increasing
with v, i.e.:

0=u"(=u"O)=---=u"O=ul"" )= - =u(2).

Hence u; has even larger (positive) Fourier coefficients than its first approximant uf»l) (1).
Thus as claimed,

™ = lulzlu® D= KaN "3 —e =N e M)/22 0N 7).

This example certainly fails the O(e” ") behavior conjectured earlier. Incidentally,

notice that this example (with C? bounded coefficients) nearly attains the O(N " 772)
upper bound proved in (15), (16).

4. Refinement of the approximate basis. The best choice of our orthonormal basis,
to make | A Qx| as small as possible for each given dimension N, is the eigenfunctions of
ATA of course. This follows from the Courant minimax principle. With this in mind we
could start with an initial set of functions ¢, - - -, ¥ then do a refinement of them,
rotating span (¢4, - - * , ¥x) approximately into span (first N eigenfunctions of A"A) by
the block power method, applying powers of the parabolic evolution operator ATA.
Because A "A can be expected to have quickly decaying eigenvalues, and because of the
fast rate of convergence of the block power method in this case, we would hope to see a
big improvement in ||[AQxy/|| with only a few iterates of the refinement process.

We now describe a computer test program based on the parabolic equation (17),
(18) (but on the interval [0, 1] rather than [0, 7 ]). Let A be the evolution operator which
carries the initial function u (-, 0) at time O into the final function u(-, T) at time T. We
approximate A by a finite-difference equation discretization A, with NX equal
subdivisions of the space interval [0, 1] and NT equal subdivisions of the time interval
[0, T']. For the space discretization of L(t) = d/dx(a(x, t)3/dx) we use the usual centered
second difference operator (with the coefficient function of course evaluated at the
subinterval center points). This leaves us with a system of ODE’s for the NX —1
dimensional discrete function i (t):

(22) a'=L(a, O0=t=T

We discretize this system in time, using the second order diagonally implicit
Runge-Kutta method of Miller [12]. Such stiffly stable methods are absolutely neces-
sary in the present case in order to accurately damp out the high order components of
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(22) as does the true ODE. Our approximant o (#) to the solution i (¢) of (22) is given by
3(T)=A5(0) = Ant A,+1 - A,A15(0) where A,+1 carries us from time ¢; to time
ti+1 = t; + At by means of the two successive linear tridiagonal implicit equations:

(23) Bj+1/3 =01+ (At/3)Lis1/30141/3,
(24) Vjy1= (%13,-“/3—%5])+(At/4)£,~+15,'+1,
where, of course §; denotes & (t, ), L;+1/3 denotes L(t; + At/3), etc.
The exact transpose (A)” is then computable by a similar finite difference sequence

whose solution w(¢) is given by w(0) = AW =ANT--- (AjH)T - (AnT)TW(T),
where (A,,;)7 carries us from time #, to t; by means of the two implicit equations

(25) Wisasa = Wis1+ (A A)(Li1) Wiaasa,

(26) Wits/12 = Wira/a+ (At/3)(Liv1/3) Wiss 12,

and

27 Wi = aWjrs/12 — T3W+3/4-

We begin with functions ¢, - - -, s (Which in the beginning stage for us are always the
discrete functions sin (1mx), - - -, sin (M#x)), where M =NX. The 1st step is an

orthonormalization of these (repeated twice to correct some serious roundoff
difficulties in later stages when the ; for larger j may all be nearly zero) to yield discrete
functions @1, - * * , ¢ar. The 2nd step is to compute Agy, - -+, Apy (the implicit equa-
tions in (23)— (24) and later in (25)-(27), can be solved in block form, of course), and
print out their norms, ||Ag;||l. The third step (explanatxons for this step later) is to
compute the M1XM1 matrix b; = (A, Ag)), i,j=1 , M1 with M1<M and
compute its eigenvalues and eigenvectors with a standard computer center routine
(e1spack). Using the computed eigenvectors we easily rotate the basis elements
©1,* ', om1 Within their own span to new elements xi, - -, xar1 which are the
eigenvectors (corresponding to Ay, -, Aar1) Of Pari(A)TAPy1, where Pag is the
projection onto the span of these elements. This yields a new orthonormal basis
X1s" > XM1, ©M1+1,° ", @nm and their corresponding A values Axq, - -, Axami,
Aemist, -, Appm. The 4th step is to compute (A)TAyy, - -, (A)"Agr. These
functions then become the initial functions for the next refinement stage. At the
beginning, before the refinement stages, a check is performed to see if At is sufficiently
small in our time discretization, by printing out ||Ay; —Ay,ll, i =1, - - -, M, where A
respresents the discretization of A with At replaced by At/2. In the last refinement
stage, to save computer time, only the first and second step are performed.

The resulting sets of orthonormal functions {¢i, -, @a} in the zeroth, 1st,
2nd, - - - refinements stages should converge toward the first M eigenfunctions
B, -+, B of (A)TA. The rate of convergence depends in a rather complicated way

upon the ratios of the eigenvalues A; (these are A; =e "7*" when a(x, 1)=1, so large T
should yield larger ratios). Since we expect these ratios to be large for large j and rather
small for small j, we suspect that the block power method by itself might be rather slow
to align {¢1, - * -, ¢ar1} One by one with {81, - - -, Bar1} even though their spans may be
nearly parallel. Therefore, for the sake of a quicker alignment we have introduced the
3rd step.

Recall that Py denotes the projection ontospan {¢1, * - -, @n}, with N <M, and On
the projection onto the orthogonal complement span {on+1, * * * , ©r @rM+1> * * * » ONXJ-
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Therefore:

(28) lAQn||z max {lAen il - - -, |Aenxll}.
Likewise:

(29) lAQN|=Aenill+ - - - +]Aenx.

The sequence ||A@i|, - - -, |Aen], - - -, |Aen] is usually rapidly decreasing, with the
elements || Agpr11, - - -, |A@nx|| much smaller than [[Agx.1|l; we merely assume that
the “unseen” values || A@ps 1], * * * , |A@nx|l, would also be much smaller than | Agn 4.
Therefore the upper bound is (29) is approximately the observable

(30) lAONI= I Aenatll+- - - + ] Aenl.

(In fact, both the upper and lower bounds in (28) and (30) are usually approximately
equal || Agn+4||; this is especially true in the later refinement stages and sometimes false
in the zeroth refinement stage.)

With this in mind we examine several computer run results; the tables for
Examples 1 through 5 display the norms of A, for our “approximate basis’’ elements ¢;
after successive refinements of this basis.

TABLE 1

EXAMPLE 1. a(x,t)=1-.5(1-¢t/T)cos (15mx). NX=60; M =20; M1=10; T=.04; NT=90.
Initial basis: ¢; =v2sin (mjx), j=1,- -, 20. |A¢;— Ag;| =.69% 107>,

0-th refinement: |Agjll, j=1,- - -,20

.69 23 36x107! 46x1072 42%x1072
29%x1072 36x%1072 26x1072 36x%1072 29%x1072
A45%1072 .59%1072 A1x107? 10%x 107! 27%x1073
90%1072 .84x%1072 .38%x 1072 23%1072 13x1072
1-st refinement: IIAWII, j=1,-+:,20

.69 23 36%x107! 27x%1072 11x1073
24x107° 49x%1077 39x1071! 13x1071! S50x1071!
A2x107H .80x 10712 73x107'2 d1x1071 16x10712
81x10712 10x10712 25%10712 32x10713 55x10712

Consider Example 1: here the coefficients begin with a =1—.5 cos (157x)att =0
and end with a =1 at t = T = .04. We use NX = 60 subdivisions on x, which should be
sufficient for our purposes since we consider only M = 20 basis elements for our block
power method. We first check that our At = T/NT =.04/90 is sufficiently fine; we see
that A(Ar)=A and A(At/2) = A differ at most by .69 x 10~° when applied to all our
normalized initial basis functions ¢; = V2 sin (mjx), j=1,---,20, which is more than
adequate accuracy for our purposes.

Now notice that even with 19 elements of the initial basis, @1, *, @10~
V2 sin (mx), - - -, V2 sin (197rx), we have |AQ1o]=||A@20| = 1.3 X 107>. On the other
hand, with only one refinement step we obtain a refined basis ¢4, - - - such that only 4
elements are needed for ~10™* accuracy, since || AQ4|| = ||A¢s||+ - - - + | Agsoll = |Aps|| =
1.1x107*. Only 5 elements are needed for ~10~° accuracy since [AQs|=
IAgéll+- - - +[|Ageoll = Apel| =2.4 X 107°.

Example 2 is exactly the same but with a larger At = T/NT = .04/20. We see that
our truncation error A(Af)—A(At/2) is a bit larger (=1.4 x 10™* when applied to the
initial basis), but that the results remain essentially unchanged. Here we have computed
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EXAMPLE 2. a(x, = 1-.5(1-¢/T) cos (157x); NX, M, M1, T as in Example 1; NT =20. Initial
basis: as in Example 1. ||A¢,— Ag;|=.14x 1072,

0-th refinement: |Aqjll, j=1,++,20
.6885971517
4614599385 x 1072
.2894939091 x 1072
3601174424 x1072
4491688360 x 1072
.1009673234x 107!
.9081274800x 1072
.2335640104 x 1072

1-st refinement: Aoyl j=1,- - -, 20.
.6888836077
2677930783 x 1072
.1880674611x 1075
.3078001887 x 10712
.3535879306 x 1073
.5230060660 x 10™*2
6715851716 x 10713
.5443072151x 10713

2-nd refinement: Il/iq:,ll, j=1,+--,20
.6888836078
2677930773 %1072
.1880674593x10°
.2482395905 x 1073
2702875322 x 10~ 13
.2220004413 x 1072
1297460422 x 10713
1317570645 x 10713

2253621125
.3606328407 x 1072
5908097559 x 1072

.8468108222 x 1072

.2257455333

.2700461045x 1077

.7620555335x107*3

6691155044 x 10712

2257455330

.2700461040%x 1077
.2771698023 x 1073

.1647823106 x 103

.3562653288x 107"
4167318435x 1072

2620407039 x 1072
.2918928903 x 1072

1112936136 x107*
.2708656351 x 1073

.3784955149x 1072
.1319870876 x 10™2

.3540456421x 107!
.9887008367 x10™*

.5046380266 x 10”12
.1292009366 x 10~
.1241809583 x 107*2
.8213544145x 10713
4142766621 %1073
.5571022312x 10713

.3540456408 x 107!
.9887008300x 10™*

.3658578281 x 10™*2
2970692916 x 1072
2049124567 %1073
2536235882 %1072
.1682785794 x 1073
.1168381198 x 1072

a second refinement step; notice that the corresponding ||A¢;|| differ almost not at all
between the first and second refinements, for j = 7. This indicates that ¢4, - - -, @7, after
only the first refinement step have probably been almost exactly rotated into the
eigenelements of A”A.

Consider Example 3. Here the coefficients begin with a =1 at t =0 and end with
a=1-(10/11) cos (7mx) att = T = .02. Once again we use 60 subdivisions on x. Notice

TABLE 3

ExAMPLE 3. a(x, )=1-(1-(1/(1+10¢/T))) cos (7mx); NX, M, M1 as in Example 1; T =.02;
NT =20. Initial basis: as in Example 1. ||A¢;— Agjl|=.42x1072,j=1,--,20.

0-th refinement: |Aejl, j=1,- - -, 20

.89 64 41 .18 .10
42x1071 25%x1072 24x107! 23%x107! 23%x107!
73%x1072 51%1072 21x1072 33x1072 11x1072
.13x1072 11x1072 20x1073 23%x1073 14x1073
1-st refinement: |Aql, j=1, - -, 20.

.89 65 44 S51x107! 21x1071
55%x1072 11x1072 .16x1073 .18x107* 15%x107%
.89x1077 .85x107° .30x107° 14x1078 99%107°
.13x107° 58x107° 90%x107° 24%x107° 25%107°
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TABLE 4

EXAMPLE 4. a(x, t)=1-.2(1—-t/T)(cos (87x)+cos (15mx))— .2(1 -1 +_(1 +10t/T))) cos 3mx); NX,
M, M1, T as in Example 1; NT = 20. Initial basis: as in Example 1. |Ag; = Ag;|=.16x107>

0-th refinement: || Agjl, =1, -, 20.

.69 22 34%x107! 17x107! 11x107!
12x1072 11x107! 30x1072 92x1072 56x1072
28x%1072 25%x1072 47%x1072 .38%x 1072 47x1073
37x1072 28%1072 11x1072 42x1072 73%x1074
1-st refinement: |Agjl, j=1,- - - . 20.

69 22 33x107! 29x1072 67x107*
11x107° 63x1078 .18x107® 49%107° 13x1078
73x10712 87x1071 61x10712 .82x1071? 70%x10712
72x10712 21x10712 20%x10712 34x10712 27%x10712

that our initial basis ¢; =+2sin (mjx) is the basis of eigenelements for the initial
operator L(0)=9/dx(1 - 9/9x). Nevertheless, even with 16 elements of the initial basis
we have |[AQ16l Z[|A@ys||=1.1% 10 ; and even with 19 elements of the initial basis we
have |[AQyo| = |Aga0|=1.4x107* Again, after only one refinement step we obtain a
great improvement; only 6 elements of the refined basis are needed for = 10~ accuracy
since ||AQ6I|<I|A¢7||+ +||Agsoll =|[Ag-|=1.1x107>. Only 7 elements are needed
for ~10* accuracy since [|AQ|| = |[Agsg|+ - - - +[|Apso =[|Aggl| = 1.6 x 107*.

Example 4 has a more complicated coefficient structure, but also shows a marked
improvement with only one refinement step. The coefficients begin with a =
1—.2-(cos (157x)—cos (87rx)) at t =0 and end with a=1—-(2/11) cos (3mx) at ¢t =
T = .04. Notice that at least 19 basis elements are needed for 10™* accuracy with the
initial basis since ||AQ:g||=|[A¢10]|=4.2 X 107*; however only 4 elements are needed
for 10™* accuracy with the refined basis since |AQ4|| =||Ags||+ - - - +||A@io = Aps| =
67x107%,

Example 5 shows a shorter final time T =.01. Hence it is to be expected that the
eigenvalues A; of ATA will decrease less rapidly with j than in the previous cases.

TABLE 5

EXAMPLE 5. a(x,t)= 1—(1—(1/(1+_10t/7:))) cos (127x); NX, M, M1 as in Example 1; T =.01;
NT =20. Initial basis: as in Example 1. ||Ag;— Ag;|=.42x 107>,

0-th refinement: IIfi(ijI, ji=1,---,20.

.94 79 .60 41 27

23 12 .84x107! 60x107" 39%107"
.18x 107! 21%x1072 13x107! .19%x107! 19x107!
16x107! 12x107! J1x1072 .58 %1072 44x1072
1-st refinement: |Agill, =1, - -, 20.

.94 .80 .60 42 29

21 14x107! .68x1072 26x1072 82x1073
23x1073 56%x 1074 12x107* 23%x107° 39%x107°
63%x1077 90%x 1078 25%x1078 11x1078 16x1078
2-nd refinement: Il,&pjll, j=1,---,20.

.94 .80 .60 42 29

21 14x107! 68x1072 26x1072 82x1073
23%x1073 56x1074 12x107* 23%x107° 39%x107°

63%x1077 99x1078 21x1078 44x1071° 48x107!!
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Nevertheless our refinement process shows a fair improvement. One needs at least 20
elements for 107> accuracy and 16 elements for 102 accuracy with the initial basis; with
the refined basis one needs 9 elements for 10™> accuracy and 7 elements for 107>
accuracy.

All of our present dimensionality reduction methods are not really worth the
trouble in one space variable. Consider for instance the Example 3 with ~107*
accuracy. We have reduced from a least square method with a 60 X 60 matrix A ”A using
the full 60 dimensional basis, to a 19 x 19 matrix (AQ1)” (AQo) using the sinusoidal
initial basis @1, -, @1o~v2sin (17x), - - -, V2 sin (197x), then finally to a 4 x4
matrix (AQ4)" (AQ,) using the refined basis ¢1, - - -, @4. Of course, computing the full
60x 60 matrix ATA would involve solving the parabolic equation with 60 different
initial functions, which would be a bit or work, but the inversion of the 60 X 60 least
squares matrix A”A + 21 could then be easily accomplished.

The true advantages of these methods should arise for problems with several space
variables. Let us concoct a multivariable example (admittedly artificial) in which a great
reduction demonstrably does occur. We construct this example from our one dimen-
sional Example 1, thus avoiding the much larger computing cost of having to apply our
refinement method to examples with two space variables.

Consider the parabolic equation

31 u, = (a(x, Hue ) +(a(y, Huy)y, 0=x=1, O0=y=1, 0=t=T,
with the conditions:
(32) u =0 on the lateral boundary, u = &;(x, y) = ¢:(x)g;(y) at t =0,

where a(x, t) is the coefficient function of Example 1 and the ¢; are the orthonormal
basis functions of Example 1 (either the full basis, the sinusoidal basis or the refined
basis). Now, because of the separability of this problem (i.e., the commutativity of the x
and y differential operators in (28)), we find that the discrete solution at time T is given
by A.f;,» =Al<pi(x)/§2<p,-(y) where A; is the solution operator (with respect to x) of
Example 1 and A, is the same solution operator (with respect to y) of Example 1.
Notice that the &; form an orthonormal basis on the square and that:

lA&]=1Ail 424l

Now, letting the ¢; be the sinusoidal basis we see that ||A¢,| = 10* exactly for the 107
index pairs {(1, 1)—(1, 20), (2,2)-(2, 14), (2,16)-(2, 18), (3,3)-(3,7), (3, 9)-(3, 14),
(3,16)-(3, 18), (13, 13), (13, 14), (13, 16), (14, 14) and the symmetric pairs} and that
these norm values drop off rapidly for larger values of the indices. Let S107 denote this
set of indices, let Q07 denote the projection onto the space spanned by the comple-
mentary basis elements &;;, i, j € S107 and notice that:

”A—le” = max ||A§,,|| =107
i,j € S107

Thus it seems that at least 107 sinusoidal basis elements (and possibly quite a few more)
are needed for 10™* accuracy.

Letting the ¢; be the refined basis of Example 1, however, we see that we canlet S14
be the set of 17 index pairs (1, 1)-(1, 5); (2, 1)-(2, 4); (3, 1)-(3, 4), (4, 1)-(4, 3), (5, 1).
With only these 17 refined basis elements we then have at least 107 accuracy. In fact,
the numerical evidence from Example 2, where we did a second refinement, indicates
that the first few elements ¢, - - + , @7 of our first refined basis are almost exactly equal
to the first few eigenfunctions B4, - -, B7 of ATA, and ATA,. Notice, moreover,
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because of the commutativity of A; and A, that the eigenfunctions of A”A are exactly
of the form B;(x)B;(y) = ¢:(x)e;(y). Hence [|AQy7||=max,es,, |A&l=.7 x 107,

Notice that the block power method with 17 elements would eventually give us
exactly the 17 largest eigenelements

{&i(x, y) = Bi(x)Bi(y), for (i, j) € S17}.

(Probably for purposes of faster convergence for the block power method we would
carry along a few more basis elements, say M = 30, then proceed with an eigenvalue
routine such as ESIPACK ,as we have done before, to pick out the dominant 17 or so
eigenelements from this refined space of dimension 30.)

In this two variable example we have therefore reduced the required dimen-
sionality of our approximate basis from 60 X 60 = 3,600 for the original full basis, to 17
for a refined basis. Notice that computation of the parabolic solution A¢ for a single
initial function £(x, y) is a big ]ob but easﬂy feasible. So also would be the computation
of the parabolic solutions ATA¢, - - -, ATA&; for several steps of our block power
refinement method. Computation of the parabolic solutions Aé&;, - - -, Aoy for the
sinusoidal approximate basis would be a much larger problem, and so would be the
inversion of the corresponding 3,600 % 3,600 nonsparse least square equations would
capablhtles of modern computers. However, computation of the parabolic solutions
Ap1, - -+, Aps oo for the full basis would require an enormous expenditure of time, and
inversxon of the corresponding 3,600 % 3,600 non sparse least square equations would
be beyond the memory and speed limitations of modern computers.

One final point should be called to attention. In some cases (such as when the final
time ¢ = T is rather large) the eigenvalues of A”A die out so rapidly that it is rather easy
to accurately compute (by a variety of methods) the required first few exact eigenvalues
and eigenfunctions. (As we have said, the numerical evidence in our Example 2 seems
to indicate that we have found almost exactly the first seven eigenvalues and eigen-
functions with only one application of our block power method; W. Kahan has pointed
out to us that a Lanczos type method would probably give even faster convergence.) In
such a case, having evidence that we have found nearly exact eigenvalues and eigen-
functions, it would probably be best to apply the method of partial eigenfunction
expansion (4)—(7) rather then the least squares method (8)-(9).
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CANONICAL FACTORIZATIONS OF
DISCONJUGATE DIFFERENTIAL OPERATORS*

ANTONIO GRANATAT

Abstract. In a previous paper W. F. Trench (1974) proved that it is always possible to factorize a linear
ordinary differential operator L, disconjugate on (a, b), in the form Lu=p,(p,-1(- - - (pou)' - - +)')" with
o (1/p;)=+00 or Ib (1/p))=+0(i=1,-+,n—1). Following on from this we consider factorizations with
the conditions [, (1/p;) <+ or [* (1/p;)<+o(i=1,---,n—1). All circumstances where it is possible to
obtain factorizations of such two types are characterized, taking into account the behavior at both endpoints.
In doing so two subclasses of disconjugate operators on (a, b) are pointed out: the well-known one consisting
of those operators which are also disconjugate on [a, b]and another one with properties opposite, so to say, to
those of the first subclass, as far as the double asymptotic behavior at the two endpoints is concerned. In the
first case some new characterizations are added to the many already known whereas the second subclass is
interesting in itself. Some of the results are especially important if viewed as useful lemmas in studying global
or asymptotic properties of solutions to perturbed disconjugate equations.

1. Introduction. A generic nonempty interval of R will be denoted by 7; (a, b),
—©0=a<b=+00,is an open interval. All functions are real-valued. Lll(,c(g’ ) denotes
the set of functions which are integrable on every compact subset of J; C*(9) and
AC*(TJ) denote respectively the set of functions with continuous or absolutely
continuous kth derivatives on 7. L, (n € N) will stand for an nth order linear ordinary
differential operator represented by

(1.1) Lu=u"+a,()u™ P+ -+a,(Hu, VYueAC" 1T).

When there is no ambiguity we will write L instead of L, ; it is tacitly assumed that
n = 2. Such an operator will be called type (*) on  if it can be represented by (1.1) with
a; € Lioe(9), Vi. An operator L, of type (*) on g (or the equation L,u = 0) is termed
disconjugate on J if every nontrivial solution of L,u = 0 has at most n —1 zeros on 7,
counting multiplicities. Fundamental papers concerning disconjugate operators are
those by Polya [25], Hartman [6], [7], [8] and Levin [17] whereas important mono-
graphs and textbooks on the subject are those by Karlin [9], Karlin-Studden [10],
Coppel [2], Willett [38].

A fundamental property of an nth order disconjugate operator is that it can be
represented as a symbolic product of n first-order operators. The proof of the following
theorem may be found in Polya [25] and Mammana [21] for particular cases and in
Levin [17, Cor. 2.2, p. 62] and Rosati [26] in its full generality.

THEOREM 1.1. Let L, be an operator of type (*) on an open interval I (bounded or
not); then the following properties are equivalent:

i) L, is disconjugate on .
ii) Equation L,u =0 has a fundamental system of solutions, ui, - - - , U,, such that

(1.2) W(ul,“‘,uk)>0 on?/_, k:l,...’n,
where W(uy, - -+, ug) = W(u1(2), - + -, ux(t)) is the Wronskian determinantofuy, - - - , uy
and W(u)=u.

iii) L, has a factorization of the type

(1.3) Lot =pu[paa(- - (prlpow)) )Y, VYueAC" N9),

* Received by the editors June 6, 1978 and in final revised form January 23, 1979.
t Dipartimento di Matematica, Universita della Calabria, C.P. 9-87030 Roges (Cosenza)-Italy.
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where the p/s are suitable functions such that

(1.4) p()>0 Vied, Vi; peAC"(J), 0=i=n-1; p,cAC’9).
iv) L, has a factorization of the type

(1.5) Lu=D+p)D+py)---(D+p,), VYueAC" '(J),

where Du=u' and the p/’s are suitable functions.

Factorizations of type (1.3) or (1.5) are useful when studying general properties of
disconjugate equations as shown, for example, by Polya [25], Mammana [20], [21],
Zedek [39], Hartman [7], [8], Levin [17]; however in studying global or asymptotic
problems related to perturbed disconjugate equations of the form L,u=
ftuu',- -, u("_l)), it sometimes appears that factorization (1.3) is not very useful in
itself. In fact, when the method of ‘‘variation of constants” is applied to the equation,
one finds that the possible solutions for the problem at hand (multipoint boundary value
problems, asymptotic behavior of solutions, etc.) satisfy certain integral equations
which can be easily studied only if the coefficients p; of (1.3) are subject to suitable
integrability conditions at one or both endpoints of . Trench [32] has shown that every
operator L, disconjugate on (a, b), has a factorization (1.3) such that

b
(1.6) J(l/pi)=+°0, i=1,---,n—1 or J’(l/p,')=+00, i=1,---,n—1

The usefulness of such factorizations can be clearly seen in Kartsatos [11],
Kusano-Naito [13], Lovelady [18], [19], Trench [33] and also in papers dealing with
functional differential equations viewed as perturbations of a disconjugate equation,
among which we mention only Grammatikopoulos [3], [4] and Philos, Sficas, Staikos,
Stavroulakis [22], [23], [24], [27], [28], [29]. Furthermore the entire asymptotic theory

of Willett [34]-[38] could be simplified by the use of Trench’s results. The following
condition has also been considered

b
1.7) j (1/p)<+c, i=1,---n—1,

cf. Granata [5], Kusano-Onose [14]-[16], Kartsatos [12]. Such factorizations can
sometimes yield results complementary to those obtained by working with factoriza-
tions of the Trench type, see [5, Thms. 3.1 and 3.3].

Continuing on Trench’s line we shall study the existence of factorizations satisfying
(1.7) at one or both endpoints or satisfying (1.6) at both endpoints. Throughout we shall
only use factorizations of type (1.3). Section 2 contains definitions of and some general
facts about the two types of factorizations, while § 3 sets out the main results of the
paper: proofs are to be found in § 5. In § 4 there are some examples.

2. Two types of canonical factorizations.

DEFINITION 2.1. Let 9 =(a, b), —00 = a < b = +00; the symbol D, (7)=D,(a, b)
will denote the family of all the operators L, of type () disconjugate on 7.

DEFINITION 2.2. A factorization of type (1.3) of an operator L € D, (a, b) is said to
be a canonical factorization (C.F. for short) of type (I) [resp. of type (II)] at the endpoint
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a if the functions p; satisfy not only (1.4) but also the following conditions

(2.1) Ja(l/pi)=+w, i=1,---,n—-1,
(2.2) [resp. L 1/p)<+oc0, i=1,--- ,n—l].

An analogous definition holds at the endpoint b replacing |, with [°.

Such factorizations will be also termed ‘“‘global’ on (a, b) since they represent the
operator L on all of (a, b) and the coefficients p; satisfy (1.4) on (a, ). On the other hand
a factorization will be termed ‘“local” at a [resp. at b] if it represents the operator L on
an interval of the form (a, a +r) [resp. (b —r, b], r >0, or if the p;s satisfy (1.4) on such
an interval only. The term factorization, referred to a given operator L € D, (a, b), will
always stand for a global factorization on (a, b).

Canonical factorizations of type (I) are those studied by Trench who proved the
following fundamental result.

THEOREM 2.1 (Trench [32]). Every operator L € D,,(a, b) has a C.F. of type (I) ata
and a similar C.F. at b. Furthermore every C.F. of type (I) at an endpoint is ‘‘essentially”
unique in the sense that conditions (2.1) determine po, - - -, p, up to multiplicative
constants with product 1.

Where C.F.’s of type (II) are concerned the situation is different: indeed an
operator L € D, (a, b) may have no (global) C.F. of type (II) or may have an infinity of
“essentially”’ different ones. For instance the operator d°/dt’, regarded as an element
of D;(—00, +00), has no global C.F. of type (II) both at —o0 and at +00. This could be
proved by writing in full the identity " = p,(p1(pou)’)’ and then using simple devices but
is left to the reader because it is a particular case of a more general result to be proved
below. On the other hand the same operator, regarded as an element of D,(T, +) or
D,(—o0, T), where T is any real number, has an infinite number of essentially different
C.F.’s of type (II) at +oo [resp. at —cc], namely,

W) = (t—c)"‘[(t - c)z(f‘—_('—z) ] |

t

where c is any constant <T [resp.> T].

The following result is a counterpart of Theorem 2.1 and asserts the existence of
local factorizations of type (II).

THEOREM 2.2. Let Le D, (a, b), —c0=a <b=+00. Then for every to, a <to<b,

there exists a C.F. of L in the interval (a, to) which is of type (II) at a and a C.F. in (to, b)
which is of type (II) at b.

3. Statement of the main result:, Generally speaking it is not true that a global C.F.
of type (I) or (II) at an endpoint is also a C.F. at the other, and, even when it s so, it is not
necessarily of the same type. We shall characterize all the possible situations and the
existence of global factorizations of type (II). In doing so we shall point out the
interdependency between canonical factorizations, hierarchical systems, generalized
disconjugacy and double asymptotic behavior of solutions. Some definitions are
needed.

DeFINITION 3.1. Let Le D, (a, b); a C.F. of L is said to be mixed if it is of type (I)

at one endpoint and of type (II) at the other; it is termed double if it is of the same type at
both endpoints.
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DEFINITION 3.2. Let L, be of type (*) on (a, b) and let #o € [a, b], possibly ¢, = +00.
An ordered n-tuple (uy, - * *, u,) of solutions of L,u = 0 is called a hierarchical system at
to if there exists a deleted neighborhood N of ¢, such that

i) we(t)#0,teN, k=1,---,n,

i) im,,, ue(®)/uk+1(0)=0,k=1,---,n—1.

Note that the order of (ui,: -, u,) is vital in Definition 3.2 and that every
hierarchical system at a point ¢, is a fundamental system of solutions on (a, b).

DEFINITION 3.3. An n-tuple (uy, - * +, u,) is called a double hierarchical system on
(a, b) if it is a hierarchical system at both a and b; it is called a mixed hizrarchical system
on (a, b) if (uq, - + -, u,) is hierarchical at a and (u,, * - -, u;) is hierarchical at b (or vice
versa).

The locution “hierarchical system” is used by Levin whereas Hartman, Willett and
Trench use “principal system”. The concept of a mixed hierarchical system is that of a
fundamental principal system as given by Willett [36, Def. 1.5].

Hartman [7, Thm. 7.2, p. 331 and Thm. A, p. 353] and Levin [17, Lemma 2.1, p.
58] showed that every disconjugate equation on (a, ) has a hierarchical system at a and
another one at b; on the other hand the existence of a mixed or double hierarchical
system is only assured for certain subclasses of disconjugate equations. The following
theorem establishes the equivalence between the existence of a global C.F. of type (II),
of a mixed C.F. and of a mixed hierarchical system: it is a completion to Trench’s results
[32, Thm. 2].

THEOREM 3.1. For L € D,(a, b) the following are equivalent properties:

1) The C.F. of type (1) at a is a C.F. of type (1) at b;

2) The C.F. of type (I) at b is a C.F. of type (1) at a;

3) L admits of a global C.F. of type (II) at a;

4) L admits of a global C.F. of type (II) at b;

5) Lu =0 has.a mixed hierarchical system on (a, b).

Extending the concept of “zero” of a function and the consequent notion of
disconjugacy (see Levin [17] and Willett [36], [37]) many other characterizations may
be added to those in Theorem 3.1. By so doing we shall show the equivalence between
Trench’s results reported in Theorem 3.1 and Willett’s disconjugacy criteria for singular
equations [36]. The following Definitions 3.4 and 3.5 may also be found in Willett [36]
to whom we refer the reader for further explanations about locutions and properties to
be used. In such definitions L will be a fixed operator of order n and type (*) on an open
interval (a, b), —00=a <b =+00. The concepts to be defined depend vitally on the
choice of L.

DEFINITION 3.4. A solution u of L,u =0 has a zero of order k, 0=k=n—1, ata
point fo € [a, b] (possibly #, = +00) provided that there exists a hierarchical system at o,

(uy, - - -, u,), and that any one of the following properties (equivalent to each other)
holds:

i) there exists a constant ¢ # 0 such that:

u(t) = cup—(H[1+0(1)], t=to,

.. . =O’ j=n,n—l,"',n—k+1,
ii lim w(t)/u;(t {

) t>to (6)/ ;) #0, j=n-k,
iii) there exist constants ¢y, - - *, ¢4« such that ¢,—x # 0 and

u(t)=clu1(t)+- c o+ Cpmicln—i (2), a<t<b.
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DEeFINITION 3.5. Denote the number of zeros, counted as prescribed in Definition
3.5, of a solution u in an interval J < [a, b] by Z,J and let Z,to=Z,[to, to]. Equation
L,u=0 is disconjugate on J if for any solution u#0 we have Z,J=n-1; it is
disconjugate at a point f if it is disconjugate on some neighborhood of ¢,.

Zeros will be considered throughout only in the above sense. We may now state:

THEOREM 3.2. If L is an operator of type (*) on (a, b) the following are equivalent
propetrties

1) L is disconjugate on [a, b];

2) L is disconjugate at any one of the two endpoints, say a, and for every interval

la, a +rl<[a, b] equation Lu =0 has a mixed hierarchical system on (a, a +r);

3) L isdisconjugate on (a, b) and Lu = 0 has a mixed hierarchical system on (a, b)

(hence all properties of Theorem 3.1 hold true);
4) for every interval [a, Bl<[a,b] Lu=0 has a mixed hierarchical system on
(e, B).

Note that Theorems 3.1 and 3.2 are illustrated by the operator d"/dt" on any
interval of the form (—oo, T') or (T, +), T € R.

Returning to the C.F.’s two cases must still be examined: the existence of double
C.F.’s of type (I) or (II). Operators with a double C.F. of type (II) on (a, b) are obviously
a subclass of operators disconjugate on [a, b]: we would like to point out that if at least
one of the two endpoints is nonsingular for L in the Willett sense [36] then the existence
of a double C.F. of type (II) is equivalent to the existence of a global C.F. of type (II) at
one (suitable) endpoint. However we prefer to postpone both this minor point and some
complementary results to a further paper. Instead we shall focus our attention on the
existence of double C.F.’s of type (I) which characterize an interesting subclass of
disconjugate operators on (a, b) entirely different from that of the foregoing theorems.
A last definition is needed.

DEFINITION 3.6. Let L, be of type (*) on (a, b). Two ordered n-tuples of solutions
of Lu=0, (uy, -, u,) and (vy, -, v,), are asymptotically equivalent at a point
toe[a, b], possibly to==+00, provided there exist n nonzero constants cy, " * * , ¢, such
that: u; (¢) = crvi (H)[1+0(1)], t > 1.

Suppose L € D, (a, b); then animmediate consequence of the property of hierarchy
is that any two hierarchical systems at the same endpoint are asymptotically equivalent
at that endpoint. On the other hand two hierarchical systems at an endpoint may not be
asymptotically equivalent at the other endpoint as shown by the following example: let

are hierarchical at +00 but are not asymptotically equivalent at z,=0. The following
theorem establishes a connection between double C.F.’s of type (I), double hierarchical
systems and hierarchical systems asymptotically equivalent at both endpoints.
THeEOREM 3.3. If L € D, (a, b) the following are equivalent properties:
1) L has a double C.F. of type (I) on (a, b);
2) L has only one (positive constant factors apart) C.F. on (a, b);
3) Lu =0 has a double hierarchical system on (a, b);
4) any hierarchical system of Lu = 0 at an endpoint is a double hierarchical system
on (a, b);
5) any two hierarchical systems at the same endpoint are asymptotically equivalent
at both endpoints.

Remarks. 1. This theorem is illustrated by the operator d"/dt" on (—00, +0).2. A
mixed hierarchical system, if any, is unique positive constant factors apart (see e.g.,
Trench [32, Cor. 2]), whereas all hierarchical systems are double as soon as there is one
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such system. 3. It is the author’s feeling that property 2) might be replaced by the
stronger one: 2a) L has only “one” factorization of type (1.3)—(1.4) on (a, b). Obviously
2a)=>2) by Theorem 2.1, but for the present we cannot say anything about the converse
with the exception of the second order case, which is elementary: see § 4, Example A.

4. Examples.

A. Second order operators. For such operators Theorems 3.1, 3.2, 3.3 cover all
possible cases. As a matter of fact if Lu = p,(p1(pou)’) on (a, b), then the possible cases
are: i) |, (1/p1) =" (1/p1) = +00; ii) {, (1/p1) < +00; iii) {* (1/p1) < +co. In the first case
Theorem 3.3 holds; in cases ii) and iii) Theorem 3.1 applies. The same reasoning can be
applied to those operators which admit of a factorization (1.3) such that there exist
positive constants a;, b; and a function p(¢)>0 on I with a;p(t)=p;(t) = b:ip(t), t€ T,
i=1,--+,n—1. The author [5], [5a] has already pointed out the special asymptotic
properties (as t - +00) of the solutions of equations of the form Lu + f(t, u) = 0, where L
is an operator of such a type on (7, +0). In the particular case p; =p Vi, this class of
operators is contained in that studied by Seda [30], [31].

B. Constant coefficient operators on (—o, +). Let L be the operator with
constant real coefficients defined by

4.1) Lu=u"+a_u" "+ - -+aou YueC"(R),
and let
4.2) Pt an " e rair+ag=0

be its characteristic equation. All the properties spoken about previously can be
characterized via the roots of (4.2). We re-collect them in the following theorem whose
elementary proof is left to the reader.
THEOREM 4.1. LetL be the operator (4.1),n =1, andletry, - - -, r, be the n complex
roots of (4.2), each counted according to its multiplicity. Then:
I) L admits, on R, of the two factorizations: Lu=[1;_, ((d/dt)— r.))u, which is of
the type (1.5), and

Lu Eernt[e(r,l 1 rn)t( ('n—z"’n—l)'( . (e(rl"rz)t(e-rlfu)/)/ - )I)I]I

which is of the type (1.3).. Hence L is disconjugate on (—0, +0) iff (4.2) has
only real roots.
II) L is disconjugate on [—0, +00] (see Theorems 3.1-3.2) iff all roots of (4.2) are
real and distinct.
III) L has the properties of Theorem 3.3 iff all roots of (4.2) are real and equal.
C. Factorizations of the operator d"/dt". (See also Carlitz[1].) Let L=d"/d" onan
interval  and consider the two factorizations

4.3) Lu=u"  (ie,pi=1, i=0,---,n),

(4.4) Lus(:—a)’""[(t—af( [(t—a)((t - )])]

where a € Ris fixed. The identity (4.4) is easily verified by checking that the kernel of the
operator L defined by the right-hand side of (4.4) is the same as that of L. First case:
T =(a, b) bounded. Then (4.3) is a double C.F. of type (II) on 7, while (4.4) is a mixed
C.F.on 7, of type (I) at a and of type (II) at b. Second case: I = (a, +00). Both (4.3) and
(4.4) are mixed C.F.’s on J: the first one is of type (II) at a and of type (I) at +00; vice
versa for the second one. A double C.F. of type (II) on (a, +00) may be obtained from



166 ANTONIO GRANATA

(4.4) replacing a with any real number @ < a. Third case: I =R. Then (4.3) is the “only
one” C.F. of L on 7 it is of type (I) at both +oo.

5. Proofs. Proofs of Theorems 2.2 and 3.1 are no more than slight remarks on and
alterations of the proof of Trench’s Theorem 1 [32]. Lest we become obscure we must

reproduce a part of Trench’s reasonings. In Lemmas 5.1-5.4 we will use the same
notations as Trench.

LeMMA 5.1 (Trench [32, Lemma 1]). If the operator

5.1 -4 a -
.1) L=panazn &°

is in Dy(a, b) with [b &1 <+00 then L can be represented in the form
(5.2) L=—==2_  p>0,

where

(5.3) no(t)=§o<t)-[b§1, nl(t)=§1<r)-([b§1)_2, n2<t)=§2(t)-f§1.

Hence it is [b 1= +00 and [, 71 <+, no matter what the behavior of ¢, at the point a.
According to our terminology this lemma says that if an operator L € D,(a, b) hasa
global C.F. of type (II) at b then it has a mixed C.F. on (a b).
LeMMA 5.2. If in the factorization (5.1) we have ] & = +00, then in each interval
(to, b), a <to<b, L can be represented in the form (5.2), where

(5.4) 770(t)=§0(t)"[;fl, m@ =60 ( [;gl)'z, nz(t)=§2(t)-j; &

Hence we have [’ 1<+ and fio m1=+00.

Remarks. 1. Proofs of the foregoing lemmas consist in a straightforward check
that (5.1)-(5.2) define the same operator. 2. In Lemma 5.2 it is perm1331ble to choose
to=a only if [, & <+. 3. Analogous statements hold when the symbols {°, [, Iy, are
replaced throughout respectively by |, ]a, ]'0 The latter also applies to the following two
lemmas.

LeMMA 5.3 (Trench [32, Lemma 2]). If the operator

5.5 L=—=%— 2 — = ;>0
5:3) M3 dt py dt py dt po H

is in Ds(a, b) with ]b u1=+0 and Ib w2 <+00, then L can be represented in the form

1dl1d1l1ad-
(5.6) L—ZZZZ;EV_O, v; >0,

b .
where |” v; =+, i =1, 2. Furthermore

5.7) I v; < +00 (i=1,2) provided J wi < +0o (i=1,2).
Note that by Lemma 5.1 it is always possible to suppose ]b p1 = +00. Property (5.7)
is not explicitly pointed out by Trench; however it is easy to convince oneself that it does

hold by re-reading the original proof and paying due attention to the two possibilities
examined therein.
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LEMMA 5.4. If in the factorization (5.5) we have j' w1 <+00 and j o =~+00 then
in each interval (to, b), a <to<b, L can be represented in the form (5.6) with I v; <+
(i=1,2).

Note that by Lemma 5.2 it is always possible to suppose ]b p1 < +oo provided we
consider (5.5) only in an interval (a +r, b), r>0.

Proof of Lemma 5.4. It is essentially the proof of Lemma 2 [32] with some obvious
modxﬁcatlons patterned on Lemma 5.2 which we shall sketch briefly: firstly the symbol
[ in[32, p. 323]is replaced throughout by I, , where o has been chosen in advance; then
a word-for-word repetmon of the argument leads one to prove that L can be represen-
ted in the form (5.6) with j' v, < +00. We still have to show that f v, < +00. We choose
t1, t> such that o< t; < t, < b and evaluate {;2 v,; by similar arguments as in [32, p. 323]

the following relation is easily found
t ty -1 t
(], ) (], 7)

[ () o[

1 ] to

E—Il+Iz+I3.

Now hold #; fixed and let t, > b : I, I; are bounded by assumptions; furthermore the

decreasing character of the function Mx(t)=(J;, wu2)"! and formulas (2.10) of [32],
modified as specified above, give

53 )

b
51(T)M2(T)dTEI MléJ‘ w1 < +o00.
to

to

=Myt | e ars |

to to

Hence Ib v, <+00. 0O

Proof of Theorem 2.2. Let us consider factorizations on an interval (fo, b). Lemmas
5.2 and 5.4 establish the theorem for n =2, 3. If n =4 one may proceed by induction as
in Trench [32, Thm. 1]: the whole proof remains unchanged when j',b is replaced
throughout by ;. 0

Before attempting to prove the theorems in § 3 we must reconsider our Definition
3.2. In current literature the inequality in condition i) is found to be systematically
replaced by the stronger one: i') u;(¢)>0.

Due to the linearity of the operator L this replacement is obviously immaterial
when dealing with hierarchical systems at a single point; but when considering, as in
Definition 3.3, the behavior of solutions at both endpoints the difference is substantial.
Our definition is the most suitable one for our purposes: for instance the equation u” =0
has a double hierarchical system on (—00, +0) according to Definition 3.2, but it does
not have any such system on the same interval if condition i’) is used. On the other hand
Theorems 3.1, 3.2 are intimately related to results, concerning mixed hierarchical
systems, due to other authors: our first step will thus be to show that conditions i) and i')
are equivalent when dealing with mixed hierarchical systems of solutions to discon-
jugate equations. From now on we put for brevity

UKLy, t>ty © u=ov), t=>to,

u~v, t>ty < u=v[l+o)], t->1.

The following lemma is a slight weakening of the hypotheses concerning the signs of
u, in Proposition 15, p. 117, of Coppel’s [2].
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LEMMA 5.5. Let LeD,(a,b), —0c=a<b=+, and let (ui,::-,u,) be a
fundamental system of solutions to Lu =0 on (a, b) such that:
i) u. >0 on a neighborhood of b,k =1,- -+ ,n;
i) u1<-+<u,t->b;
iii) wux # 0 on a neighborhood of a, k=1, - - n;
V) U, <+ -<up, t>a.
It then follows that u, >0 on (a, b) fork =1, -, n.

Proof. As well known, see [17, Lemma 2.3, p. 61], the hypothesis L € D,(a, b)
implies that L is disconjugate on [a, b) and (a, b]. This and definitions 3.4-3.5 imply
that a nontrivial solution to Lu = 0 on (a, b), say v, such that Z,b = n — 1 (as the function
u1 in our hypotheses) or Z,a = n —1 (as the function u,) must have the same strict sign
on all of (a, b). Hence our proposition holds trivially for n =2. Let us proceed by
induction on n. Let n > 2 and suppose Lemma 5.5 has been proved for any operator of
the class D,_i(a, b). Hypotheses i)-ii) imply, by [17, Thm. 2.1, p. 66], that
W(uy, -+, u)>00n(a,b), k=1, -, n Consider now the equation of order n —1,

Lu=W(uy, -, up-1,u)/W(uy, -+, u,)=0, whichisdisconjugate on (a, b).

It has (uq, * * *, u,-1) as a fundamental system. From i), - - - , iv) and the inductive
hypothesis it follows that u;, >0 on (a, b), k=1, ---,n—1. But, by iv), u, has n —1
zeros at a and hence itis >0 on (a, ). O

Proof of Theorem 3.1. For the equivalences 1)&2) & 5) see both Trench [32, Thm.
2] and Lemma 5.5. We now prove 3) = 2) the converse being obvious.

Let Lu=p,(pa—1(- - - (pou) - - -)") with p; >0 on (a, b) and

(5.8) J (1/pi) <400, i=1,---,n—1.

Then if n =2, 3 Lemmas 5.1 and 5.3 prove the existence of a factorization of L on
(a, b) which is of type (I) at b and of type (II) at a. Let n =4 and let us construct a global
C.F. of L on (a, b) of type (I) at b. When we repeat word for word the inductive
procedure used by Trench [32, Thm. 1, pp. 323-324] the desired factorization is
achieved: what is more, by reviewing the proof, it is easily seen (as pointed out after
Lemma 5.3) that, due to (5.8), the new factorization is, like the old one, of type (II) at a.

The equivalence 4)< 1) is proved similarly to 3) & 2), interchanging the roles of a
and b. 0O

Proof of Theorem 3.2. The equivalences 1) &2)<>4) are a restatement of Willett’s
results [36]: they were originally enunciated for L of type (1.1) with continuous
coefficients, but they also hold for L of type (*) as is explicitly pointed out by Willett.
1)=> 3): see either Willett [36, Thm. 1.2]or Levin[17, Lemma 4.1, p. 80]. We now show

3)=>1). Let (41, * +, u,) be a fundamental system for Lu =0 on (a, b) such that
UL U » - DU, t->a,

(5.9)
UKL UK+ KU, t->b.

Let u be a solution of Lu =0 with at least n zeros on [a, b]; we must show that
u=0. Let ¢, be n such zeros, a=t1=t, = -=t,=b, each of them counted as many
times as its multiplicity; three cases will be distinguished. Firstcase: t; # a Vior t; # bVi.
It follows that u = 0 since L is disconjugate on [a, b) and on (a, b]. Second case: there
existsre{l,---,n—1}suchthat ;=a (i=1,---,r)and ;,=b (i=r+1,---,n);ie.,
Z.,a=rand Z,b = n —r.From (5.9) and Definition 3.4 it follows that there exist suitable
constants ¢; such that the two relations u = ¢, 1Uy41+° * *+cCatipand u = cyu++ - -+ 4,y
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simultaneously hold. They imply that ¢; =0 Vi:i.e., u =0. If n = 2 the proof is complete;
if n =3 there is a third case to be examined, namely when Z,a=r, Z,b=s, Z,(a, b)=
n—r—s,where l1=r,s=n—-2and2=r+s=n-1.

If u has the representation ¥ = cyu; +- - - +c,u,, then we have:

Za=r > c1=c¢c=--=¢ =0, Zb=5s > ci=Cp-1="'"=Cps+1=0.
Hence u has a representation of the type
(510) U=Cri1lrr1 T+ * " F Cpesllp—s

in which the right-hand side has n —r—s terms. Observe now that a result quoted in
Coppel [2, Prop. 15, p. 117] implies that (uy, - - -, u,) is a Cartesian (or Descartes)
system on (a, b): see definition on page 87 of [2] or on page 67 of [17]. If then u=0, it
would follow from (5.10) that u has at most n —r—s—1 zeros on (a, b) while, by
hypothesis, Z,(a, b) =n —r—s: a contradiction. [

Remarks. 1. Proposition 15 on p. 117 of Coppel’s [2] is enunciated for L of type
(1.1) with continuous coefficients but it holds for L of type (*) too.

2. By retracing all steps of an argument by Polya [25; proof of Thm. II, p. 317] and
using Polya’s mean value theorem in the generalized version given by Willett [37, Thm.
1.1], it is possible to give a different proof of the third case examined above. But such an
alternative proof, though using the full force of Willett’s advanced result, would
however be confined to operators with continuous coefficients owing to the fact that
Willett’s theorem loses its meaning for operators of type ().

Proof of Theorem 3.3. 1)&>2): an obvious consequence of Theorem 2 1.

1):>3) Suppose L has the representation (1.3) with [, (1/p;) = j' (1/pi) =+

(i=1,---,n—1). Let T be any number, a <T <b, and consider the functions u
defined by
1 ! dty f dt, fe-1 dty
uy=1/po, Ur+1(2) = j J' J k=1,---,n—1).
1=1po wenO= s ) i e e ey )

They form a fundamental system on (a, b) and it can be trivially checked that

(5.11) U1K U<+ ++<uy, bothast->aandast-b.

3)=>1). By hypothesis Lu =0 has a fundamental system (uy, - - -, u,) satisfying
(5.11). Now let (1.3) be the C.F. of type (I) at b. We must show that [, (1/p;) =+,
i=1,-:-,n—1. (A similar proof holds interchanging a and b).

Let Lou=pou; Lu=p;(L;—u)(1=i=n). Hence Lu = L,u. By Corollary 3 of
Trench [32]we have L, =0 (1=k =i)and Liu;, =r; (=constant #0) 0=i=n—-1).

It is immaterial whether we assume r; = 1 Vi. Therefore, T being a fixed point in
(a, b), the functions u, satisfy the following relations

1 1 1 fk+1 k
(12)  w=1p  wa@=— | [ [T Y o
po(t) Jrp1 Jr P2 T Dk i=u

1=k=n-1),

where the c,/’s are suitable constants. To prove [, (1/p;) = +00 we use induction on i. If
i =1 we have from (5.11)

-1

ul(t)/uZ(t)=(I;(1/p1)+cl,1) =o0(1), t->a.
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Hence |, (1/p1) = +. Suppose now i > 1 and that |, (1/p;) =+ fori=1,- - -, k.
By (5.11), (5.12) we obtain

0= 1'1112 Ui +1(2)/ Ui 42(2)

‘1 -1 1 t1 % q
cim [l [
t>a Jrpq T Dk TD1 T Pk+1

Because of the inductive hypothesis we may apply ’Hbpital’s rule k times to the
right-hand limit in (5.13): this gives rise to lim,., (f7-(1/px+1))"". Since px+1>0, such a
limit exists (finite or infinite): hence it must be =0. This is the same as Lf- (1/pr+1) = +00.

4)=>3): obvious. 3)=>4). Let (uy," -, u,) be a double hierarchical system on
(a, b), i.e., satisfying (5.11), and let (vy,- - -, v,) be any hierarchical system at an
endpoint, say b. From the elementary properties of hierarchical systems it follows that
there exist constants c; such that: v = cx1us +- * * + Crrlis, crr # 0 Vk. This and (5.11)
imply

(5.13)

(5.14) Uk ~ Ckklk, both ast—>a andast- b,

i.e., (v1, '+, v,) is a double hierarchical system.

Relation (5.14) alsc proves the implication 3) = 5). The proof of 5)= 3) requires an
intermediate step supplied by the following

LEMMA 5.6. If Le D,(a, b) then Lu =0 has a fundamental system, (uy, " -+, uy),
hierarchical at an endpoint, say a, and with the following property at b: “For each
ke{l, - -,n—1}either ux < U1, t=> b or ug 1< Uy, t > b is true’’.

Proof of Lemma 5.6. Let (uy, - -+, u,) be any hierarchical system at a. Let us show
how it is possible to construct another system, (vy, - * -, v,) hierarchical at a and with
the desired property at b. We recall that, [17, Lemma 2.1], for any two nontrivial

solutions u and v, and for any point ¢, € [a, b], one of the following three circumstances
always occurs:

u<u, v< Uy, u~cv, ¢ =const. #0 (t> ).

Now we set v, = uy; to find v, we compare u, with v, as t > b. If v, < u,, t > b, or
U< vy, t > b, we set v, = u,; while if there exists a constant c¢; # 0 such that

(5.15) vi=ciuz+o(uy), t->b,

we set v, = v1 —C1U2. We thus have:
V1= Uy, V2~ Yala, t—->a (in both cases), v2#0,
v2=0(uz) = o(vy), t—>b (inthe second case, because of (5.15)).

To find v; we compare us; with v, if v < us, t > b, or us< vy, t > b, we set vz = us. If
v2 = Caus+o0(us), t > b, we set v3=v,— cous. As for v, it follows that

U3~ Y3lUs, t->a (in both cases), y3#0,
va=0(u3)=o0(vy), t—>b (inthe second case).

An iteration of the procedure yields the desired basis. 0

We return to the proof of 5)= 3) in Theorem 3.3. Let (u1, - - -, u,) be asystem with
the same two properties as in Lemma 5.6: we shall show that property S) implies that
such a system is a double hierarchical system on (a, b). Consider the new system
(@1, +, 0,)definedby: gy =u;+- - ~+u, k=1, -+, n.Itisobviously hierarchical at a
like the former: hence, by 5), it is asymptotically equivalent to (u1, - - -, u,) both at a
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and b. In particular there exists a constant ¢, # 0 such that &, = u; + u, = cous +o(uy),
t-b; hence uy = (c2—1)uz+ o(uz), t > b. Because of the property stated in Lemma 5.6
it must follow that c;—1=0: i.e., 1 < u3, ¢t > b. By induction on i we will prove that:
U< uUjr1,t>b,i=1,---,n—1.Suppose thisistruefori =1, - - -, k —1; as above there
exists a constant ci.+; # 0 such that

U1 =Ur+* + Ur1 = Cir1Ui+1+ 0 (Uks1), t->b,

i, ur+-+ur=(rs1— Dltgs1+ 0(uk+1), t->b.
Using the inductive hypothesis we infer that

u[1+o(D)]=(ck+1— Dttsr+0(uUe+1),  t=>b,

and, by Lemma 5.6, u; < ux+1, t—>b. This completes the proof of 5)=>3) and of
Theorem 3.3. 0O
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ON THE ANGULAR VARIATION OF SOLUTIONS OF
SECOND ORDER LINEAR SYSTEMS*

STEVEN D. TALIAFERROY

Abstract. Upper bounds for the angular variation of extremal solutions of the second order linear system
x"+P(t)x=0,

where P(t) is asymmetric n X n matrix, are obtained. The angular variation of a solution of the above equation
is defined to be the length of its radial projection on the n — 1 dimensional sphere. Also, if n =2 and x(¢) is an
extremal solution, then an upper bound, depending on the angular variation of x(¢), is obtained for the
number of zeros of each component of x(¢). The proofs are based on variational arguments.

1. Introduction. In this paper we will consider the second order linear system
(1a) x"+P(t)x =0,
(1b) x(a)=x(b)=0,

where P(t) is a real, positive definite, symmetric, n X n matrix whose elements are
continuous in ¢ for a =t = b. We assume throughout this paper that if ¢ € (a, b) then (1a)
has no nontrivial solution which vanishes at both a and ¢, and that (1a,b) has a
nontrivial solution, (i.e. we assume the interval (a, b) contains no points conjugate to a,
and that b is conjugate to a.) Second order linear systems play an important role in the
calculus of variations where they appear as the Euler-Lagrange equations of the
second variation of the functional J(y) = j': F(x,y,y') dx. For references to this material
see [2], [4] and Chap. VII of [5]. ;

In particular we will study the size of the angular variation of solutions, x(¢), of
(1a, b). If we write x(¢) = r(¢)0(¢) where r(¢) =|x(¢)|| and 6(¢) = x(¢)/|x (z)|| then by the
angular variation of x(f) we mean | ||6'(¢)|| d¢. Geometrically, and in two dimensions, if
the angular variation of a curve is 6y, then there is some sector of angle 6, and vertex at
the origin such that the curve remains in that sector. In n dimensions, the angular
variation of a curve is the length of its radial projection on the (n —1) dimensional
sphere.

We can write P=Q"DQ where Q(¢) is orthogonal and D(¢) is diagonal for
a =t = b. To motivate the results of this paper, consider the case Q(¢) is constant, i.e. the
eigenvectors of P are constant. Then by making the change of variable y = Qx, (1a, b)
becomes y"+ D(t)y =0, y(a) = y(b) =0. Clearly this problem has a nontrivial solution
which remains on one of the coordinate axes, and corresponding to this solution, (1a, b)
has a nontrivial solution with angular variation zero. Conversely, it will follow from the
results of this paper that if D is constant, i.e. the eigenvalues of P are constant, then the
angular variation of every solution of (la, b) is less than Vv nm’>—4 where n is the
dimension of the space.

Some work of a similar nature has been done by Ahmad and Lazer [1] who proved
that if each of the elements of the matrix P are positive on [a, b] then (1a,b) has a
solution which remains in $ ={(x1, x2, -+ *, xn): x;=0,i=1,2, -+, n}.

Also the concept of angular variation has been used by Schwarz [6] to study
disconjugacy of first order systems.

* Received by the editors November 14, 1977, and in final revised form January 15, 1979.
t Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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2. Results. Let the eigenvalues of P(¢) be A;(¢), i=1,2, -+, n. We can assume
each A;(¢) is continuous on [a, b] and A1 (1) = A2(8) = - - = A, (2).
THEOREM 1. Let

(a+b—2t)(b—t)’ ifa§t§a+b,
) b—a
‘Y 3
(2t—(a+b))(t-—a)’ ifa+b§t§b.
b—a 2

Then the angular variation of every solution of (1a, b) is less than or equal to

b
[ vonw-r0 a

THEOREM 2. The angular variation of every solution of (1a, b) is less than or equal to
b 1/2
[(b—a)J A(t) dt—4] .

Remark. Since x"P(t)x =x"A1(¢1)I,x ", x € R", we have by the results of Morse [4]
that if ¢ is the first zero, larger than a, of a solution of the scalar equation

p"+Ai(t)p=0, p(a)=0,

then c € (a, b]. Hence by the well-known Lyapunov inequality for scalar equations we
have

(c—a)r)\l(t) dt—4>0

and this inequality is also valid for ¢ replaced with b. Thus the bound given for the
angular variation in Theorem 2 is a real number, and Theorem 2 can be viewed as a
generalization of Lyapunov’s inequality.

The proof of Theorems 1 and 2 will be postponed until § 3. Next we will show how
Theorem 2 can be used to obtain the result mentioned in the Introduction. First we need

the following lemma; the short proof of it given below was pointed out to me by W. T.
Reid.

LEMMA 1. If c € (a, b) then the problem
1
(2a) Pl Ma(D)+ -+ A ()p =0,

(2b) p(a)=p(c)=0
has only the trivial solution, p =0.

Proof. Since, for the equation (1a), (a, c] contains no points conjugate to a we have
by Theorem 2 of [2, p. 120] that

J' (h'"h' —h"Ph) dt>0

for continuously differentiable » dimensional vector valued functions & with h(a)=
h(c)=0 and h=0. Taking h = e;u where u is any continuously differentiable scalar
function with u(a)=u(c)=0, u#0, and ¢; is the jth canonical unit vector we have
§5 (u™ - p;u*) dt > 0. Summing over j from 1 to n and dividing by n yields

(3) J: [u’z—(% igl p,,)u’] dr>0.
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But if p is a nontrivial solution of (2a, b) then multiplying (2a) by p, integrating by parts,
and using (2b) yields

[t g aTmo

Using the fact that the trace of a matrix is the sum of its eigenvalues we see that (4)
contradicts (3) and hence the lemma is proved.

COROLLARY 1. Let S=inf{(1/n)A1(t)+:--+A,(t)):a=t=b} and D=
sup 3(A1(t) —A.(¢)):a=t=b}. Then b—a=m/vS and the angular variation of all
solutions of (1a, b) is less than or equal to (D/S)5m>.

Proof. By the Sturm comparison theorems and Lemma 1, if ¢ € (a, b) then the
problem

p"+Sp=0, pla)=p(c)=0

has only the trivial solution. Hence b —a = =/ Vs, So, by Theorem 1, if 6, is the angular
variation of a solution of (1a, b) we have
b
6o=D L y(t)dt=D(b —a)’f—zég 15—2772.
This completes the proof of Corollary 1.

COROLLARY 2. If S is as in Corollary 1 and M =max {A,(t):a =t =b} then the
angular variation of all solutions of (1a,b) is less than or equal to (M/ S)m*—4)2,

Proof. Since b—a =/ Js Corollary 2 follows from Theorem 2.

Note that if the eigenvalues of P are constant then M/S = n; hence, by Corollary 2,
the angular variation of every solution of (1a, b) is less than (nr*—4)"2.

We conclude this section with an application of the angular variation of a solution
x(t)= (u (t)) of (1a, b) when P(¢) is the 2 X 2 matrix (p(t) r(t)) with r(¢) # 0. Since P(¢)
() r() q()
is positive definite we have p(¢)>0, q(£)>0, and r*(1)<p(r)q(¢) for a =t=b. Let
ro=MiNas.=s |F(t)|, Po=maxas=s p(t), and qo = maxa=,=5 q(?).

THEOREM 3. Let m, and m,, be the number of zeros in (a, b) of u and v respectively.
Then

00 00

m, = and my=———m——
* *“tan™' (ro/q0)

“tan™" (ro/po)

where 0y is the angular variation of x(t).
Proof. We establish the bound only for m,, ; the bound for m, is obtained in a similar
way. Let m = m,. From (1a) we obtain

) u"+pu+r(t)o=0.

If ce(a, b) and u"(c)=0 then v(c)#0, for otherwise, by (5), we would have
u(c) =0, which contradicts (1a, b) is disconjugate on [a, b). Also from (5) we obtain

p(culc)+r(c)v(c)=0
and hence
u(e) __rte)
v(e)  ple)
If d € (a, b) and u(d) = 0 then v(d) # 0 and u(d)/v(d)=0.
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Let the zeros of u be a=do<d1<dr<:::<d,,+1=0b. Choose 1,1, ", lms1
such that #; € (d;—1, d;) and u'(t;) = 0. Choose ¢, ¢3, * * *, Cms1 Such that ¢; € (1, ¢;) and
u"(c;)=0.

Fori=2,3,---,m+1 we have ¢, d;—1€ (t;_1, t;). Hence, if J; is the interval with
endpoints ¢; and d;_; then the intervals {J;}/.5' are pairwise disjoint. Thus

m+1

0z"s | 1ol ar

m+1 _ u(c,-) -1 u(di—l)
= tan™" —t

,‘gz an U(C,') an v(di——l)
= mil tan™" re) =mtan"' 2,

i=2 p(ci) Do

and the proof of Theorem 3 is complete.

For example, if r(¢)=p(¢)=1 and q(¢) > 1 is continuous, and if b is the first point
past a for which the boundary value problem

u"+(1+qg@®))u"+@t)—Du=0,
u(@)=u"(a)=ud)=u"(b)=0

has a nontrivial solution then u has at most (4/7)8, zeros in (a, b). Furthermore if m
and M are the minimum and maximum of ¢(¢) on [a, b] then, by Corollary 1,

4, _JM-1)°+45

0= 1+m 377

3. Proofs.

DEFINITION. A pair of continuous, piecewise continuously differentiable
functions, r:[c, d]= R and 0:[c, d]-> R" will be called admissible on [c, d] if r(c) =
r(d) =0, r is not identically zero on [c, d], and ||§(¢)||=1 for all z€[c, d].

LEMMA 2. If ¢ <d, [c, d] is a proper subset of [a, b], and r and 6 are admissible
functions on [c, d], then

d
(6) I [r'2 +r2(0'70'— 0" PO)] dt

is positive.

Proof. Let x(t)=r(t)6(¢). Then x is continuous and piecewise continuously
differentiable on [c, d], x(c) = x(d) =0, and x is not identically zero on [c, d]. Also (6)
equals

d
(7 J (x'Tx'—x"Px) dt.

Using the results of Morse [3] and the fact that (a, b) contains no points conjugate to a, it
follows that (c, d] contains no points conjugate to c. Hence by [2, p. 120], (7) is positive.

If x(¢) is a nontrivial solution of (1a, b), then clearly there exist functions r(¢) and
#(¢t) which are admissible on [a, b]such that x(¢) = r(¢)8(¢) and r(t) > 0 for a <t < b. The
following lemma shows that in some sense r(¢) is convex on [a, b].

LEMMA 3. If x(¢t) = r(¢)0(2) is a nontrivial solution of (1a, b) where r(t) and 6(t) are
admissible on [a, b] and r(t)>0 on (a, b) then for each t € (a, b) the line segment joining
(a, 0) to (t, r(t)) and the line segment joining (t, r(t)) to (b, 0) both lie below the graph of r.
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Proof. Clearly r(¢) and 8(?) are twice continuously differentiable on (a, b). Also, to
prove the lemma it suffices to prove that no tangent line to the graph of r can intersect
the ¢ axis in (a, b).

So let #, € (a, b) and suppose the tangent line to r at ¢, intersects the ¢ axis at ¢,
where t; € (a, b). We will show this leads to a contradiction if 7'(¢,) > 0; in a similar way, a
contradiction can be reached if 7'(¢z,) <O.

Define
r(t), L=t=b,
r’(tz)(t - tz) + r(tz), H=Et=s .

F(t) = {

Then 7 is continuously differentiable on [ ¢, b], 7" is piecewise continuous on [¢,, ], and
F(t)=F(b)=0. _
Define 6(¢) to be 8(¢) for t, =t = b and define 6(¢) to be a solution of

€)) ¢’ =0"P()p, |dW=1, &(t:)=06(t2)

for ty=t=t,. The problem (8) has many solutions. For example we could take
& (t) =T(s) where I'(s) is a great circle on the unit sphere parameterized with respect to
arc length, I'(0) = 6(¢,), and s = y(¢). Then if y(¢) satisfies the equation

9) Y0 =TT (yO)POT(y(1)),  v(1)=0,

then ¢ (¢t) =T(y(¢)) will satisfy (8). Since the right-hand side of (9) is bounded for
t1=t=t,and —o0 <y <0, a solution of (9) exists on [#;, t,]. Clearly @ is continuous on
[t;, b] and @' is piecewise continuous on [, b).

Since x(t) = r(¢)6(¢) satisfies (1a) we have

(10) r"o+2r'6' +ro" =—rpPé.

Multiplying (10) on the left with " and noting that 67 =1, 976’ =0,and 76" = —¢'"¢’
we obtain

(11) r"+[67P6—6'"6'lr=0.
By virtue of the way 7 and 6 are defined, they also satisfy (11) for ¢ €[¢,, b]. Therefore

b
j [F*+7%(0'"0'— 0" Pa)] dt
151

b b
= I (F*+7'7)dt=7F =0.
21 t
This contradicts Lemma 2 and proves Lemma 3.
LEMMA 4. If A is a symmetric, real, n X n matrix with eigenvalues A1 Z A, =- - -
A. =0 and if x and y are orthogonal vectors in R", then

(12) lxTAy| =301 = Al Iyl

Proof. By virtue of the fact that A can be diagonalized using an orthogonal matrix,
it suffices to prove the lemma in the case A is a diagonal matrix with Ay, A5, - - -, A, on
the diagonal. Clearly is suffices to prove (12) with the absolute value signs removed from

the left side of (12). We can also assume ||x||=|ly||=1. Thus proving the lemma is
reduced to showing

v

(13) A1x1y1+' * '+Anxnyn §-%(Al_An)

for x and y orthogonal unit vectors.
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Note that we can assume x1y1 = X2y2 = - * = X,,,,, Since permuting the coordinates
doesn’t change the fact that x and y are orthogonal unit vectors, but can increase the left
side of (13). Suppose x,y, =0 and x,.1y,+1 =0. By the orthogonality of x, y

Lxyi=Xxyi+t Y xyi=0
1 1 r+1
and since ||x||=|yl=1
(£ x) + (= £ ) =S e el - Iyl = 1
1 r+1 1
hence

0S¥ xyi=— ¥ xy=h
1 r+1
Thus
Axiyi+e Xy A Y1+ F Y F A (X1 Ve o XaYn)
=A1=A)xayi+- +xy,)
=3A1—An).

Proof of Theorem 1. Let x, r, and 6 be as in Lemma 3. Since x(¢) satisfies (1a) we
have

(14) r"o+2r'6' +ro" = —rPo.

Multiplying (14) on the left with 2r°6'" and noting that 8’76 = 0 and 26'76" = (8'"¢'Y,
and then integrating both sides of the resulting equation from a to t we get

t
(15) role’@r=-2 J. r*(r)0'T (r)P(r)6(7) dr.
Taking the absolute value of both sides of (15) and using Lemma 4 we get
(16) AOIOR S [ F@0e) Ao dr

Let I(¢) be the right-hand side of (16). Taking the square root of both sides of (16) and
then multiplying both sides by r*(£)(A1(f) — A, (¢)) yields

(17) I =00 - AT ().
Dividing both sides of (17) by 2(I(¢))"’? and integrating from a to ¢ gives

(18) I(t)*= L' r*(T)A(r) dr

where we are letting A () = (1/2)(A1(£) — A, (). So by (16) and (18) we have
(19) POl Ol=[ A dr

By a similar argument we have

b
(20) r2(t)||0’(t)||§j r*(r)A(7) dr.

t
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By virtue of Lemma 3 we have

bt <r=1=9T0
r(r) _|b—t 2
21) _(—t)é
’ r—a £l-ié§t§1'§b.
t—a’ 2

Dividing both sides of (19) by r’(¢), integrating the resulting inequality from a to
(a +b)/2 and using the first part of (21) gives

(a+b)/2 (a+b)/2
(22) [ wanas| T yoroa
Doing the same thing with (20) and the second part of (21) yields
b b
(23) [ eonas]  yorwar
(a+b)/2 (a+b)/2

Inequalities (22) and (23) taken together prove Theorem 1.
Proof of Theorem 2. Let x, r, and 0 be as in Lemma 3. By Lemma 3, no tangent line
to the graph of r can intersect the ¢ axis in (a, b).Hence

1 ! 1
———§££Q§—— fora<t<b.
b—t r(t) t—a
Therefore, for € >0,
b—e _n 1 b—e b—e n2
I Ca=C +I (%) a
a+e T r la+e a+e \I

1 b—e (a+b)/2 b—¢
dt dt
24) a+e Ja+e (t—a) (a+b)/2 (b—t)2

b—s+g— 4

a+e € b—a.

Since r satisfies (11), r"(a) =r"(b)=0. So
ra+e) 1 r'b—e) 1
——=—+4+0(1), =—=+0(1).
rla+e) e o) r(b—e¢) e o)

1A
=~

RSN

~ |

Hence, letting € tend to zero in (24) we get

by 4
(25) I —dt=- .
. r b—a

So by (11), (25) and Schwarz’s inequality we have
26 L Ib d : r 2 ’ Tp 4

! = ! = -
(26) b_a(aﬂf)ll t) _alloll dt_L (07P) dt ——

Multiplying the inequality (26) by (b —a), taking the square root of both sides, and
noting 8 "P6 = A(¢), we obtain Theorem 2.

4. Concluding remarks. As we have seen, if the eigenvalues of P(¢) are constant on
[a, b] then the angular variation of all solutions of (1a, b) is bounded by a quantity which
is independent of P(¢) and depends only on the dimension of the space. This is no longer
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true if we don’t require the eigenvalues of P(¢) to be constant as can be shown by an
example which is too long to be included.

Acknowledgment. I would like to thank the reviewer for simplifying the proof of
Lemma 4 and pointing out that Theorem 2 generalized Lyapunov’s inequality.
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CONSEQUENCES OF ANALYTICITY IN LINEAR ELASTOSTATICS AND
RELATED SYSTEMS*

BRIAN STRAUGHANTY

Abstract. Recent results of Oleinik and Radkevich are investigated in the context of linear elastostatics, a
mixture of two such solids and a possible model for a fibre reinforced elastic material. The results described
establish Liouville theorems, and theorems for uniqueness, -analytic continuation and continuous depen-
dence.

1. Introduction. In this paper we are concerned with applying some recent results
of Oleinik and Radkevich (see Oleinik [21]) to anisotropic linear elastostatics and
related systems of equations. These results provide uniqueness theorems, unique
continuation theorems and interesting bounds for solutions in unbounded domains.
The systems dealt with here are anisotropic, inhomogeneous linear elastostatics, a
mixture of two anisotropic linear elastic solids and a theory of fibre reinforced elastic
materials. In each case the equations are considered only on all of R*; while it is possible
to consider boundary value problems (see Oleinik [21]) this is not done here as the
details would possibly obscure the results which are being described. Indeed, the
potential of Oleinik and Radkevich’s work on elliptic systems has probably not yet been
fully explored in continuum mechanics and new applications are likely to be of interest.

The exposition of Oleinik’s [21] results given here is only for elliptic systems of
order two and for those defined on R®; this in no way covers all the situations embraced
by the general theory given in [21]. However, we should like to point out that at the
heart of all of her results is the following theorem on Banach space valued functions.
(This theorem is proved with the aid of Baire’s category theorem; see Oleinik and
Radkevich [22]-[24].)

Let O be adomainin R"*! andlet (x1, x) e R** ' i.e. (x1, x) = (x1, X2, * * * , Xn+1). For
q=1,2,-++,n+1 define the differentiation operator D, =-id/dx, and D* =
D32 - - Dyr+r where |a|=az+ -+ ani1.

THeOREM 1.1 (Oleinik and Radkevich [22]-[24].) Let B(Q) be a Banach space
consisting of distributions u € D'(Q) (D'(Q) is the dual space of Cg (Q)) with the norm
|lu||s in which the convergence of a sequence in the norm on B(Q) implies its convergence in
D'(Q). Suppose that for a domain G with G =) and for every u € B(Q)) there exists a
constant ¢ depending on u and a domain

QS(G)::{xl, yls xl(xb x)e G, |y1|<€},

such that u(xy, x) can be extended into Q.(G) as an analytic function u(x,+iy1, x) of
x1+iy1, with |D%u| bounded in Q.(G) for |a|=k, k=1. Then, there exist positive
constants & and C such that for any u € B(Q) the following estimate is valid:

su Du|=Clu .
(1.1) Qs(g) |a12§k| | el

2. Second order elliptic systems and unique continuation theorems. We consider
only R® and so let (x1, x) denote the point in R’ given by (x1, X2, x3), i.e. x = (x2, x3). Let

* Received by the editors December 19, 1978, and in revised form March 26, 1979.
1 Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland.
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182 BRIAN STRAUGHAN
then Q = R*x {|x,| < A} for some constant A. In  we consider systems of the form

N
2.1) L X ag*(0)DiuDiy=F, k=1,---,N,
=1 ar+|a|=my;
where D* = D32D3? and |a| = a; + a3, with a3}® analytic functions of x!.

System (2.1) is supposed uniformly elliptic (see Agmon, Douglis and Nirenberg[1],
Oleinik [21]) and so attached to the system are integers sy, *, Sn, f1, * * * , IN, COT-
responding to the equations and unknowns, respectively. The coefficients m,; are such
that m;; = si +¢; and in this work we only consider s +; = 221f Sk+t; <0 then my; =0,
and the s, are chosen so that s, =0. Moreover, an integer m is defined by m =

3 Z;il (s; +¢;). The equations (2.1) form a uniformly elliptic system if there is a constant
A such that

M&ES +|EP)™ = |det pij(x, &1, &)|

(2.2)

=ATH(ES + e,
where
(23) pki(x’ gl, g) = Z ai}a (x)gt;lga’

ay+lal=sc+t

and where £* = £32¢33
For a set Q in R? the usual norm on C*(Q) is defined, i.e. if fe C*(Q),

k B
= DFf|<oo.
2.4) Iflo=sup 2. 1Dl

The following theorems form the basis of the remainder of the work. We
emphasize, however, that they are only special cases of the general theory developed by
Oleinik and Radkevich.

THEOREM 2.1 (see Oleinik [21]). Letv = (v, - * + , vn) be a solution to system (2.1)
in Qwith F,=0,k=1,---, N, and suppose v, eCh" (Q) Suppose that ||lagi®|| =M
for some constant M and a1+|a| =m, k,j=1,--+,N.

Let Q1= X{x1|<A -2}, w1 < w. Then, the function v; with all derivatives up to
order t;_, can be extended into the domain Qs(Qy) = {x1, y1, x|(x1, x) € Q4, |y1| <8}, asan
analytic function of x1+ iy, and for |a|=t;— 1 the following inequality is valid:

N

(2.5) sup ID;'c‘viIéC( Y. sup |vk|), j=1,--+,N,
Q5(02y) k=1 Q

where & and C are constants depending on N, m and the constant A in (2.2).

The next result is a similar analytic continuation theorem for solutions to the
inhomogeneous version of (2.1).

THEOREM 2.2 (see Oleinik [21]). Let Q, Q, and the bounds on ai}* be as in
Theorem 2.1. Suppose the functions F.(x1, x), k=1, - -, N, and their derivatives up to
order 1— s, may be extended into a domain Qs,(Q) ={x1, y1, x|(x1, x) € Q, |y1| < 8o} as
analytic functions of x,+ iy,. Suppose also that v;e C'"'(Q) is a solution to (2.1) in Q.
Then, v; can be extended into the domain Qs(Q) ={x1, y1, x|(x1, x) € Q4, |y1| <6} with

! A function ¢(x) defined on R™ is said to be analytlc at a (real) point xo € R™ if it is representable by an
absolutely convergent power series in the variables x’ — x{ in a real neighborhood of x,. This implies ¢ can be
defined as an analytic function in a complex neighborhood of x,, see John [15, p. 52].

2 This is sufficient to include the examples in §§ 3-5. For some systems in continuum mechanics, e.g.
multipolar elasticity (see Green and Rivlin [11]) it may be desirable to remove this restriction.
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derivatives of v; up to order t;— 1 as analytic functions of x1+ iy, and for |a|=t;_, and
constants 8, C depending on m, N and A, we have

N N
2.6 ID"0oua0= €| T s X Il

Both of the above theorems are proved using the a priori estimates for elliptic
systems (see Agmon, Douglis and Nirenberg [1]) and the Morrey-Nirenberg [20]
method for establishing analyticity in elliptic systems (see Oleinik [21]). As our main
interest is in the application of these theorems we do not include the rather technical
proofs.

3. Anisotropic linear elasticity. The equations governing the displacement field of
an anisotropic linear elastic body in equilibrium are

3.1) (apjch (X)u,n) ; +ofp =0,

where u,, are the components of displacement, f is the body force, p the density, a,;x, are
the elasticities and standard indicial notation is assumed. It is supposed ap;ix are real
analytic functions of x = (x,, x3) and the equations are here taken to be defined on R’

A thorough study of uniqueness for various boundary value problems for (3.1) is
given by Knops and Payne [17] and a similar account of existence theory may be found
in the works of Fichera [4], [S]. The above system may be regarded as an elliptic system
in the sense of Agmon, Douglis and Nirenberg and so the results of [1], [25] are
applicable. In this work, however, we are concerned directly only with Oleinik’s results;
these do incidentally have implications for the uniqueness question. Application of the
generalized ellipticity concept of [1], [25] in the context of elasticity theory was
discussed by Hayes and Horgan [26].

To consider (3.1) as an elliptic system in the sense of Agmon, Douglis and
Nirenberg [1], [25] (see § 2) we may take s, =0, t, =2, k=1, 2,3, m =3 and then the
ellipticity condition is

(32) Idet Apjkh (x)§,~£h| # 0,

VE#0 (see e.g. Knops and Payne [17, p. 20]). Moreover, the uniform ellipticity
condition (2.2) is

A& +€P)’ = |det apunéiénl
A&l +1EP),
for some constant A independent of x(e R).
Oleinik’s work [21] essentially selects one direction, taken here as the x; direction,

and employs analyticity by extending u, to be an analytic function of the variable

x1+iy1, x1, y1 € R. In particular she seeks solutions which for (3.1) may be represented
as

(3.4) Uy (x1, x) = e U, (x; n),

where x = (x3, x3) and u = p1 +ipo, 1, w2 €R.

We shall suppose the elasticities satisfy (3.3) and deal with solutions of the form
(3.4). The following theorems employ estimates (2.5) and (2.6) to obtain results for U,
and consequently for u,. The proofs of these results are given by Oleinik [21] in the
general linear elliptic setting; however, brief details are included for completeness, for
the elastic case.

(3.3)
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The first result concerns the dependence of u, on the real part of the complex
amplitude w.

THEOREM 3.0. Let Q, Q1, w, w1 and Qs(Q1) be as defined in § 2 and consider a
solution to the homogeneous system for (3.1). From (2.5) we find that if a ., and their first
and second derivatives are uniformly bounded on R then

3 3

(3 L sup |Uy(xs wI =K exp (=lusl+2usl( 3 sup|U,)
p= w7y q= w

for a constant K.

The above result is analogous to Oleinik [21, Thm. 12]. From this inequality we see
that solutions to (3.1) of the form (3.4) which are bounded in w decrease exponentially
in w; with increasing u;.

The next application of Theorem 2.1 gives a type of Liouville theorem for solutions
to (3.1) in R®. Another Liouville theorem for elliptic systems is given in Agmon, Douglis
and Nirenberg [1, p. 70]. Although it is well known that Liouville theorems may be
obtained for elliptic equations via Hopf’s maximum principles, I do not know if this
approach is applicable to systems.

THEOREM 3.1. Let u, € C*(Q) be a solution to (3.1) of the form (3.4) with
| @pjicnlliz =M <00 and with f,,=0 in the domain Q=R’. Suppose there is a constant
81(>0) such that in w = R

3.6 3
(3-6) 5 U0 )| = exp {81l

Then, if —8|u1|+2|u2| +281+1og C <0 where 8 and C are given constants, u, =0 in Q.
Proof (cf. Oleinik [21, Thm. 4]). Let wg ={x € R*||x|<R}, for some R >0.
Applying Theorem 2.1, (2.5) becomes

3
sup [y =C(Tsup lual),  p=1,2,3,
Q5(Q1) 1 Q

for constants 8, C. Set ®=wgr42, w1=wr, Q=wr2X{x1|<R+2} and Q=
wr X {|x1| < R}. Hence, we deduce that

3 3
¥ sup U} S exp (log C'— s+ 2us)(% sup |Til),

WR+2

where C'=4C. Now, 8 and C' do not depend on R, and so we may use a ‘bootstrap”
argument to extend the above inequality to wg+2n for M € Z, M > 1, to see that

3 3
(3.7 ;suplUfléeXp{M(log C’—5lu1|+2luzl)}(§ sup IUk|>-

WR+2M

Finally, let us invoke hypothesis (3.6) on the right hand side to obtain
3
(3.8) ;sw |Uj| = exp {M (log C' — 8|u1|+2|u2| +28:) + 81 R}.

The coefficient log C'—8|w1|+2|us|+28: <0 by hypothesis (taking C'=C in the
statement of the theorem) and so we may let M - o in (3.8) to see that U, =0 in wr.
However, R is arbitrary and so Uy =0 in w. The theorem follows.

The next theorem gives a decay result in a neighborhood of infinity.

THEOREM 3.2. Let u,eC 3(Q) be a solution to (3.1) of the form (3.4) with
| @pjicn[|R2 =M <0 and with f, =0. Let 6, 6, and C’ be as in Theorem 3.1, let R be a
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positive constant and suppose (3.6) holds in {|x| > R}. If there is a positive constant 5, such
that

(3.9) 48,4 8,+1og C'+2|ua]— 8|uq| <0,
then

3
(3.10) 2| Uk(x; w)| = C" exp (=82lx),

for (x2, x3) €{|x|> R} and some constant C".

Proof (cf. Oleinik [21, Theorem 7]). The proof follows similar lines to that of the
last theorem. However, wr, is replaced by Sk N w where w = {|x|> R}, S = open ball in
R?, center x, radius k. With p(x) = |x|— R and p.(x) = greatest integer =p(x), hypothesis
(3.6) leads to

3
Y sup |Uj

1 SiNw
=exp[(4+R)58:]- exp (3(p(x)— 1)(48; +2|u,|
+log C' = 8lua) = 3(p(x)—1—p.(x))

- (log C"+2|ua| — 8ua))}.

(3.10) follows directly from (3.11) by use of the arbitrariness of x.
We consider next the inhomogeneous problem for (3.1). The result described may
be viewed as a continuous dependence theorem on the values of the body force f;.
THEOREM 3.3. Let u; € C*(Q) be a solution to (3.1) with ||aynllge=M <0 in
QX R. Suppose that for any R >1,

(3.11)

3
z IH{ler = C1 exp (85R),
=

for some constants Ci, 83(>0), where wr ={|x| <R}, and pf,=e"“**H,. If there are
positive constants 8, 81, C' such that

6|M1|>logcl+‘l’2+6ﬁ’ ﬂ=1’3,

and if in

3
; |Uk(x)| = C; exp (81]x)),
then

3
; sup |U;| = C; exp (83R).

The proof of this theorem is very similar to the proof of Theorems 3.1 and 3.2,
except Theorem 2.2 is used in place of Theorem 2.1 (cf. Oleinik [21, Thm. 8]).

It is worth observing that Theorem 3.1 gives a uniqueness theorem for solutions to
(3.1) which have form (3.4) and which are bounded exponentially as in (3.6). Moreover,
by a modification of the proof of Theorem 3.1 we may rederive a proof of uniqueness in
the dynamic linear elastic problem for negative definite elasticities, a result first proved
by Hayes and Knops [14] (see also Knops and Payne [17, § 8.2]). Nevertheless, for the

dynamic problem uniqueness holds without any definiteness as shown by Knops and
Payne [16].
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4. A mixture of two anisotropic linear elastic solids. This section considers
theorems equivalent to those of § 3 for a mixture of two elastic solids. The theory we
employ was developed by Green and Steel [12] and explicit forms for the linear theory
were presented by Knops and Steel [18].

Let us consider a mixture of two anisotropic linear elastic solids occupying R’.
Then, employing the notation of [18], the components of displacement of each solid
with respect to a reference configuration are denoted by w, and 7, and in terms of these
components the equations of equilibrium in the mixture are
(41) Okp,k — Tp +p1Fp =0,

Tipk + 7 +p2G, =0,
where oy, and , are the partial stresses in each solid, =, is a diffusive force, p; and p;
are the densities of each solid, and F, and G, denote the body force per unit mass of
each solid.

The constitutive equations are

(42) Okp = akp + bkp +Akprswr,s + Ckprsnr,sa
(4-3) Tkp = Opk +kar.\‘l)r,s + karsnr,sa

P1 P2
(4.4) Tp = ; brsnr,sp - ; (asr + bsr)wr,sp-

In these equations ay, + bx, and b, are the respective initial stresses in each solid and
the coefficients Axprs, Biprss Ciprs and Dy, are given explicitly in terms of the coefficients
of the free energy for the mixture in equations (3.3) of [18]. We shall assume the
coefficients in (4.2)—(4.4) depend only on x = (x», x3), are real analytic, and together
with their first derivatives are uniformly bounded on R*.

It appears necessary with the approach adopted here to additionally assume that

(45) (ak,, + bkp),k = 0, bpk,k =0.

These conditions are obviously satisfied for an initially unstressed mixture.
To write (4.1) as an elliptic system in the sense of Agmon, Douglis and Nirenberg

[1], set s, =0,4=2,k=1,---,6, and then m =6. The uniform ellipticity condition
2.2)is
(4.6) A&l +16P)° = det Lic| Z A (& +1€P)°,
for each real (&1, &, &2) # 0 and the 6 X 6 matrix [k is given by
A11(pr)  Aw(pr)
4.7 I = ( )
@7 % =\Aaa(pr)  Asalpr)

where the A’s are the following 3 X 3 matrices

All = Akprsfsfk +%(asr + bsr)fsgpa

A12 = Ckprsgsgk —Blbrsfsfp’
)
(4.8)
Az = karsfsfk ‘%(asr + bsr)‘fs‘fpa

A= kars‘fs‘fk +%brs§s§p'
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For the mixture problem the solution corresponding to (3.4) is sought as

w,(x1, x)=e™1Q,(x: 1),
(4'9) P(l ) p( #)

np(x1, X) = ™Y, (x; ).

Adapting the methods outlined in § 3, we find the analogue of (3.5) to be

p=11% w;

3 3
(4.100 X {sup 'Qp|+sup|Yp|}§KexP (—8ua] +2|ua)) Zl {sup Inql+sup|Yq|},
wi q= w w

if 1< w and F, =G =0.
The corresponding Liouville theorem (Theorem 3.1) shows that if a solution to
(4.1) of the form (4.9) in R®, with F, = G, =0, is such that in R?

4.11 3
@i L (0,1+%, ) Sexp (31l

and —8|u1|+2|u2| +28; +log C <0, then w, =7, =0 in R’.
If the solution (4.9) with F, = G, =0 is such that (3.9) holds and condition (4.11) is
satisfied for |x|> R, then in {x € R?||x|> R},

4.12 3
(4.12) 00,1+ ¥, Zexp (-2,

for a positive constant §,.

Finally, there is the result analogous to Theorem 3.3 for the inhomogeneous
problem for (4.1) which shows that if the body forces may be written as p1F, = ¢"“"1 %,
and p,G, = "9, with ¥ (| %, |5 +11%|l1.) = C1 exp (83R), and there is a solution of
the form (4.9) with

8|u1|>logC’+y,2+63, B=1,3,

such that in w

3
; (192,] +Y,)) = C, exp (81]x)),
then

3
(413) Zl:sllf (|‘Q’P|+|YPI)§C3 €xXp (83R),

where the constants §, 81, 83 etc. are as in Theorem 3.3.

5. Aninextensible linear elastic material. We shall consider a linear elastic solid in
R’, but one which is inextensible in the x3-direction. In this case (see Hayes and Horgan
[13]) there is introduced a C* function ¢ (x) which is associated with an arbitrary tension
in the x3-direction. For the class of problems to be studied here it is sufficient to consider
the third component of displacement, u; to be identically zero, see [13]. The relevant
equations are then

(Cajpittp,1),j =0
(5.1) jBIYB, 1),

(cajpiup,),j — (c33psUps) 3+ d3=0

where Greek indices take values 1, 2, while Latin indices as before assume the values 1
to 3. The elastic coefficients c,,s are assumed constant as in [13], although this is not
necessary for the following results to remain valid.
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Equations (5.1) form an elliptic system in the sense of Agmon, Douglis and
Nirenberg [1] in the variables (ui, u,, ¢ 3), if we choose t;=t,=2, §,=5,=0, t3=0,
s3=0, and so m = 2. The uniform ellipticity condition may be verified to be

A _1(I§1 l2 + l§|2)2 = I%3aSSBvcaiBlcstM‘fiflgpfm|
Z A (&) +€PY

for every real £ #0. (Let us observe that (5.1) differs from the elliptic systems of §§ 3
and 4 in the selection of the integers #,, s,.)

In a manner analogous to (3.4) solutions to (5.1) are sought of the form

(5.2)

(5.3) Ua(x1, X) =™ UL(x),  @a(x1, x) =™ 1D(x).

Results analogous to inequality (3.5) and Theorems 3.1 and 3.2 may now be
established. The left hand side of (3.5) is replaced by sup,,, |U;(x)|+sup,, |Ua(x)|+
sup.,, |®(x)|, whereas the left hand sides of (3.6) and (3.10) become |U;(x)|+|UJ(x)| +
|®(x)|. Furthermore, we may establish a result analogous to Theorem 3.3 for the
inhomogeneous version of (5.1) for an appropriate body force.

6. Concluding remarks. Implications for uniqueness for the equations of §§ 4 and
5 follow in the same manner as the corresponding ones in § 3.

While we have only dealt with the equations for three types of elastic materials, it
should be possible to adapt Oleinik’s work to several other systems. In particular, we
mention the multipolar theories of Green and Rivlin [11] and the associated dislocation
theories of Fox [6], the rod, shell and plate theories of Green, Naghdi, Laws and
Wenner, see e.g. [7-10], the micropolar theory of Eringen [3] (see also Knops and
Straughan [19]), higher order mixture theories, see e.g. Atkin and Craine [2], and
thermoelasticity. However, as noted earlier, for some of these theories the case of
second order elliptic systems discussed in § 2 is insufficient and the more general theory
given by Oleinik [21] is necessary.

Acknowledgment. I should like to thank a referee for helpful comments regarding
presentation and for bringing references [25] and [26] to my attention.
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INTEGRAL AVERAGES AND THE OSCILLATION OF SECOND ORDER
ORDINARY DIFFERENTIAL EQUATIONS*

G. J. BUTLERY

Abstract. Some of the more important and useful tests for the oscillation of the second order scalar linear
differential equation y”+qy = 0 are given by the classical Fite—Wintner theorem and its generalizations by
Wintner and by Hartman. These tests involve the behavior of the integral of q or, more generally, the average
behavior of the integral.

Several years ago, Waltman extended the Fite—Wintner theorem to nonlinear equations. We show that
the Wintner and Hartman theorems also extend to a large class of nonlinear equations which includes the
Emden-Fowler equation. Further generalizations of the averaging technique for the linear equation due to
Coles and to Willett are also shown to extend to some degree to nonlinear equations.

1. Introduction. Consider the second order scalar linear ordinary differential
equation

(L) y'()+qt)y(H=0, tel=[T, ).

In the study of this equation from the point of view of disconjugacy on I, many
criteria for oscillation have been found which involve the behavior of the integral of g.
Three of the more important such conditions which guarantee that all solutions of (L)
oscillate on I are the following:

(A1) J q(s) ds =00 (Fite [9], Wintner [18]).
T
(A2) lim % I I q(t)drds =00 (Wintner [18]).
Lindad TJT
. 1 t s
—00 < lim — I I q(r) drds
t—>00 TT
(A3) Lo ps
<Tlim n I I q(r)drds =00 (Hartman [10]).
Lingd TJT

Several years ago, Coles [7] and Willett [17] extended these criteria by considering
weighted averages of the integral of g of the form

fré(s)(Jrq(r) dr) ds
[r¢(s)ds
Thus Willett [17] showed that there is a class ®, of nonnegative locally integrable, but

not integrable, functions, which contains all such bounded functions, such that if for
some ¢ € ®,, we have

A¢(t, T) =

(A4) —00<lim Ay(f)<lim Ag4(f)S© or lim A,(#) = oo,
t>c0 t>o ->00
then all solutions of (L) oscillate on I.
Willett’s result is actually stronger than that stated, but in this form it is clearly seen
to be an extension of the criteria (A2) and (A3), which together correspond to (A4) with
d=1.

* Received by the editors June 9, 1978, and in revised form April 16, 1979.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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In this paper we are concerned with the possibility of averaging techniques for
studying the oscillatory behavior of nonlinear equations of the form

(N) y'(©)+a(f(y(1))=0

with a particular interest when f(y) = |y|* sgn y, @ > 0, in which case we shall denote the
above equation by (N,).

In [16], Waltman showed that the Fite—~Wintner condition (A1) is an oscillation
criterion for (N,,+1), n a natural number. Indeed his method of proof extends to the
case of any monotone, nondecreasing, continuously differentiable function f satisfying
yf(y)>0 for y #0.

Our main result is that for a certain class % of functions f, both the Wintner
condition (A2) and the Hartman condition (A3) serve as oscillation criteria for (N). The
class of such equations handled in this way includes all equations of the form (N,,). In the
case a > 1, we answer a question raised by Wong in [20], [21]. When 0 <« <1, we can
obtain a stronger result than the oscillation criteria (A2) and (A3) and hence we are able
to improve a result of Kamenev [11].

As far as applying general averaging conditions of the type (A4) to (N) is
concerned, we have had only limited success; however we are able to obtain refinements
to conditions (A2) and (A3) that enable us to resolve the oscillatory nature of (N, ) when
q(t) =t"p(t), where p is a nonconstant periodic function of mean zero; for all values of
A, when @ >1, and forall A = 1, when 0 <a < 1. This answers a question raised in [21].

When f' is bounded away from zero, many of the arguments used for handling (L)
go through for (N) with only minor changes and one can obtain averaging criteria (A4)
for (N) (see also [12]).

Before proceeding to a description of the class % and a precise statement of our
main results, we make a few preliminary remarks.

Throughout we make the underlying assumption that g and f are continuous on the
real line and that f is continuously differentiable, except possibly at 0, and satisfies
f'(y)=0, yfy) >0 for y # 0 (which implies that f(0) = 0). We shall denote the set of all
such functions f by €.

By a solution of (N) we shall always mean a nontrivial solution defined on some
half-line I =[T, co). Without a sign restriction on g, there may exist noncontinuable
solutions of (N) [3]; however there will always exist infinitely many continuable
solutions under rather mild additional conditions on g (see [6]). A solution of (N)
oscillates if it has infinitely many zeros on I'; the conditions on g and f guarantee that
these zeros can only cluster at co. If all solutions of (N) oscillate, (N) is said to be
oscillatory.

We make the following imprecise, but we hope helpful, remark concerning the
study of oscillation of (N); roughly speaking there are, as in the case of (L), two main
conditions under which (N) is oscillatory. The first is that q is, in some sense,
“sufficiently positive”’; we refer to [1], [2], [4], [8], [11]-[16], [19]-[21] for results of
this nature as well as condition (A2) of this paper. The second condition is that g is
“sufficiently oscillatory’’ in its behavior, and this is the idea behind condition (A3) and
its generalization in condition (A4).

2. The class # and statement of results. For fec €, we define Q(x) =Q(x) on
(=00, 0)U (0, ) by

J. du/f(u), x>0,
(D1) Qkx)=

-1

du/f(u), x <0.

X
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Q) is monotone decreasing from (0, ©) to (a., b+) and monotone increasing from
(=00, 0) to (a_, b_), where —0=a.,. <0< b, =00, and we have

(1) A(x)=-1/f(x), x#0,
(2) Q'(x)=f(x)/f(x) =0, x#0.
Define y(x), §(x)(=v¢(x), 8¢(x)) on (—00, 0) U (0, o) by
1 Q"(u) 1/2
(Dz) ( )— J; W du, x>0,
« 1 Qu) ’ ’
1
j QW) du, x>0,
(D3) s(x)=4

-1
Q' w)"* du, x<O0.
(Here we interpret y(£1) to be lim,_ . y(x), which is easily shown to be zero.)
Define I'(x)(=Tf(x)) for 0<|x| <1 and A(x)(=As(x) for x #0, +1 by

__ykx) __|6()]
(D4) F(x)~—_log Q(x)’ A(x)= |Q(x)l1/2'

Finally, define & to be the subset of functions f of € for which

@) lim Q(x)=b,<0© or lim I'(x)>1,

x->+0 x—->+0

(ii) lirzl0 Qx)=b_<o0 or ﬁ@o x)<-1,

(H) (i) lim A(x)>0,
x>0
(iv) |l|i~m A(x)>0.

The defining conditions for &% are not very pleasant, but may be shown to hold for
f(y)=1y|* sgn y, @ >0; any finite linear combination of such functions that is in the set
%; any analytic function in €. Indeed membership of % is determined by behavior near
y =0 and near |y|=o (subject to already being in €); hence functions with the
asymptotic behavior indicated above will also be in &, and we can also allow asymptotic
behavior of the type |y|*|log 1/y|® sgn y, a, 8>0.

Example. 1. f(y)=|y|*sgny, a>1.

1-a
Q(x)~x as x > +0, I‘(x)~\/ = as x > +0,
a—1 a—1

A(x)~2\/ al as x > +0 and as x > +00.
o —

Example 2. f(y)=y.

Q(x)=log1/x, I'x)»>0 asx->+0,

A(x)»>o0 asx-—>+0andas x - +00.
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Example 3. f(y)=|y|*sgny, 0<a<1.

Qx)~ as x > +0, b,<00,

lﬂ
A(x)~2—1a— as x > +0 and as x > +00.
-

(In each of these examples, there is a corresponding result as x - —0 etc.)

We shall also wish to consider the subset %, of functions f of & for which f is
twice differentiable on (—o0, 0) U (0, ) with xf"(x)=0. %, includes the functions
ly|*sgny, a=1.

THEOREM 1. Let f € Fand let q be continuous. Then either of the two conditions (A2)
or (A3) implies that (N) is oscillatory.

CoRrROLLARY 1. Conditions (A2) and (A3) are both oscillatory criteria for
(N,), a>0.

THEOREM 2. Let f € F and suppose that b. < 0. Then a sufficient condition for (N) to
be oscillatory is that lim,. (1/1) {1 [+q(7) dr ds does not exist as a finite limit or —co.

COROLLARY 2. The above condition is sufficient for the oscillation of (N,) for
O0<a<l.

THEOREM 3. Let f€ %, and let q(t)=t"p(t), where A >0 and p is a nonconstant,
continuous periodic function of period w and mean zero, thatis |; p(t) dt =0. Then (N) is
oscillatory.

3. A technical lemma. Our results will be obtained from an analysis of the Riccati
equation associated with (N) and for this, the following lemma will be crucial.

LEMMA 1. Let f € % such that b, =, Let Q' (= Q") be the inverse function from
(a4, ) to (0, ) associated with the restriction of Q to (0, o), and for x € (a, ©) define
F(x)tobe[ f’(Q_l(x V12, Let x () be any eventually positive, continuously differentiable
function on [T, ) such that x(t) is in the domain of ot for all teI and such that
x'(t)F(x(2)) is not in L*(I). Then

=— 1 2
}Lq«lvx(t) LL(x () F“(x(1)) drds >1.

An analogous result holds if b_ = 0.
Proof. By (H)(i), there exists A > 1 such that

(3) lim I'(x)>A.

x=>+0

Suppose the lemma is false. Then for ¢t = ¢, = T, say, we have
4) I I (x'(1)2F*(x (1)) dr ds = A" x(¢).
TYT

Set the left-hand side of (4) equal to u(¢). Then

(5) 0=u()=A"*x(t), t=n,
(6) u'()=('(t)’F(x (1) =0, t=t.

Since x'(t)F(x(t)) is not square integrable on [T, o), it follows from (6) that
u'(t) > 00, u(t) > 00, as t > o0, and choosing t, = ¢, so that u'(t) >0, u(¢) >0 for t = 15, (5)
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and (6) imply for ¢t = ¢,, that
” 1/2 '
o [u_Q] _X'(DF(x(2))

ult)d T AV

Noting that the left-hand side of (7) is W)/ u' ()’ (1)) u(t))?, we may integrate
the above inequality between ¢, and ¢ =1¢,, and use the Schwarz inequality to obtain

u’(t) 1/2 _u(_t) 1/2> —1/4 x(t) s
(o8 5) (lomys) =7 [ Fe)ae

x(t2)
(8)

u(t)A—1/2

é/\_”“j F(z)z7Y* dz,

x(t2)

using (5), since the integrand is positive. Making the change of variable £ = Q™ '(z), we

have i h
o - °orf 12 g
9) JX(':) F(z)z7dz= L(x) (é%> f—é%
ho Q) 1/2
- L(,) (%T‘S) d,

where we have used (2) and put
=07 w®A™?),  he=Q7'(x(t2)).

By (D2), the right-hand side of (9) is equal to y(k(#))+c, where ¢ = —y(ho). Since
u(t)> oo as t-» o0, we have h(t)-> 0 as ¢t > 0, and using (3), (D4), we deduce that for ¢
sufficiently large,

y(h(1)+c =X log Qh(£))+c = A log (u()A™*) +¢

(10) )
= A3/4 log (m),
for t=t;=1,, say.
From (8), (9) and (10), we find that
an W _(sOV
7 (5) =(u(t2)> 126

which we may write as
(12) w'(@O/ut () zk=u'(t2)/u(t2)>0.

Since A > 1, (12) leads directly to a contradiction on integrating from ¢; to 00, and the
lemma is proved.

For the proof of Theorem 3 we shall require a slight modification of the above
lemma. For k = 1, define @, to be the set of bounded, positive continuous function ¢ for
which sup,cr ¢ (t) =k inf,c.; ¢ (2).

LEMMA 2. Assume the hypotheses and notation of Lemma 1, except that now f € %,.
Then there exists k > 1, depending on f, such that if ¢ € O, and if x(t) is continuously
differentiable on I such that ['T &(s)x'(s) ds is eventually positive, x(t) € dom. Q" for all
teland x'(t)F(x(¢)) § L*(I), then

j é(s) j (x"(1))*F*(x(r)) drds > 1.

T T

—_— 1
hn fro(s)x'(s)ds
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Proof. We proceed along the lines of the proof of Lemma 1. Choose A > 1 such that
3" lim I'(x)>A.

x-»>+0

Let k be any number such that 1 <k <A. If the lemma is false, there exists ¢ € ®, and
x (¢) satisfying the hypotheses of the lemma, such that for ¢ = #,, say,

4" J" &(s) r (x'(1))*F?*(x(7)) drds =A'? J' & (s)x'(s) ds.
T T T
Setting the left-hand side of (4') equal to u(t), we have '
5) 0=u(@®)s=A"? It¢(s)x'(s) ds, t=ty,
(6") W@®)/d@®) =" O)V’F*x(1)z0, tzt.

As in the proof of Lemma 1, we may find ¢, =¢; so that u(f) >0, u'(¢)>0 for t = ¢, and
obtain

1 W®/é@) u'(t)=\/(u'(t)/¢(t))’
¢@) (W' (®)/ b (1) u(®) u(r)

AT @IFG @)
(7o (s)x'(s) ds)'?
Let M =sup;c;¢(t), m =inf,.; ¢ (¢). For x e dom. Q7', we have
(F*(x)) = Q7 e )NQ7'®) = —f"(Q 7 (x))F(Q 7 (x)), by (D),

=0,

(7)

= 1.

since f € $oand Q' (x) > 0. Since F(x)> 0, it follows that F is a decreasing function of x
in its domain of definition.
Now x(t) = [1|x'(s)| ds +|x(T)| and so

F(x(t))zF(le’(s)lds+|x(T)|), t=t,

Since [[7¢(s)x'(s) ds|"’> = M"?([5|x'(s)| ds +|x(T)|), it follows from integrating (7)
between ¢, and ¢ > t,, and using the Schwarz inequality, that

m—1/2[log ( :_((t% , %_(%)]1/2[10 ( % >]1/2é =Y J |x'(iv>|lz;((»sv)<s» s
w(t)

=\"VipY2 J' F(z)z Y% dz
w(t2)
where

W)= L Ix'(s)] ds +|x(T).

By (5'), u(t)=A"*M ([ |x'(s)| ds +|x(T)|), t = ¢, and so

[l e g (]
u(t)A—-1/2M~1

_2_/\_1/4m1/2M_1/zj F(z)z Y dz.

w(t2)
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As in Lemma 1, we may show that the right hand side of (8') exceeds
AV Pm AV log (u(t)/u(t,)), for ¢ sufficiently large and deduce that

u'(t) ¢(tz)2(u(t))°
u'(t) &)  \u(r)’

Thus for sufficiently large f, we have u'(t)=(m/M)(u(t)/u(t;))°, which yields a
contradiction as before.

LA
o=mM 1§E>1'

4. Proofs of the theorems. Suppose that (N) possesses a nontrivial, nonoscillatory
solution y on I =[T, c0). Without loss of generality, we shall assume that y(¢)>0 on I
and put z(¢t) =y'(t)/f(y(2)) to obtain the Riccati equation

(13) 2'(t)=—q() = f'(y(1)2*(t)

which we may integrate to obtain
(14) 20)=2(T)= | a(s) ds—=[ 7)) ds.
Now [3z(s) ds=—[ du/f(u)=—Q(y(1)+ co where co=Q(y(T)), and so

y(t)=n“l[co—j

T

t

z(s) ds]

and f'(y (1)) = Fz(x(t)) where F(x) =[f(Q '(x))]"?, x(¢) = co— |r z (s) ds. Thus we may
rewrite (14) (after rearranging) as

(15) Lq(s) ds = Z(T)—-Lzsz(x(s))(x'(s))2 ds+x'(1).

Proof of Theorem 1. We integrate (15) between T and ¢t=T and then divide
throughout by ¢, obtaining

1 t s t s
(16) " j I q(r)drds =(1—T/t)z(T) —% L J' (x'(7))*F*(x(7)) dr ds

TT T
+%(x(r)—x(T)).

There are two cases to consider:
L. x'(t)F(x(t))e L*(I). Let t, =T be chosen so that [f, (x'(£)°F*(x(r)) dt]'><
1/n,n=1,2,-..For t=t, we may use the Schwarz inequality to obtain

-’1;> “ (' (5))2F2(x (s)) ds]l/z = (-1,

J:tF(x(s))x'(s) ds}

n

— (t_tn)—1/2 J- [f'(Q—l(x(S)))]l/le(S) dsl

P Q-1(x(1)

an — (-0 (CF @1/ fw) du

JO x(1,))
 Q-1(x(5,)
— (1) [ ()] dul, by (2)

JO 1 (x()

=(t—1,) 6 Q 7 (x(2)|—ca), by (D3)

where ¢, = |8(Q 7 (x(1,)))].
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By (H)(iii) and (iv), there exist A, r>0 such that A(u)= A whenever |u|<r or
|u|>1/r, that is

(18) BIZ AW, lul<r or |ul>L.
r

From (17) and (18), it follows that for any ¢>1,, either r=Q '(x(t))=1/ror 1/n=
(t—1,)"Y*[Alx(¢)|"'* = c,] which we may write as

_ 1 1171 2
(19) r=07 )= or };x_(—tt)n—lél?[;+cn(t——tn)—l/2] .

Since Q) is continuous on (0, ), there exists B > 0 such that r = Q' (x(¢)) = 1/r implies
|x(2)| =B and so (19) implies that for all ¢ > 1,,

ic(—t)-<max[ B 1 [—1-+c,,(t—t,,)"1/2}2]

t—t, t—t, A% ln
(20)
= A2 if t >, is sufficiently large,
and so we must have
21 lim M =0.

tsc0

It follows from the integrability of (x'(£))>F>(x(¢)) and from (21) that the right-hand side
of (16) has a finite limit, and so the left-hand side of (16) has a finite limit, as ¢ > co, which
will contradict each of conditions (A2), (A3).

The second case to consider is

1L x'(t)F(x(2)) & L*I). If b, <o, then x(z) = Q(y(¢)) is bounded above by C, say.
On the other hand there exist 7,->00 such that [i[3(x'(7))’F*(x(r)) drds>nt
whenever ¢ =7, and so for ¢ = 7, we see that the right-hand side of (16) is bounded
above by z(T)+(C —x(T))/t—n and it follows that the left-hand side of (16) has the
limit —co as ¢ - 0o, contradicting both (A2) and (A3).

Suppose then that b, =00, If x(¢) is not eventually positive, choose s, - o0 with
x(s,)=0 and arguing as above we deduce that lim,.. (1/7) [3[5q(7) drds =—00,
contradicting (A2) and (A3). If x(¢)>0 for t = ¢, = T, say, we may apply Lemma 1 to
obtain

;liT?o ;C%B J.T J: (x'(1))*F*(x(7)) drds > 1

and so there exists A > 1, T, - oo such that

1
x(T,)

T, ps

I I (x'(7))’F*(x (7)) drds > A
T T

which implies that

(1}:“)[“

>—00 as n->0, since x'(¢)F(x(¢))§L*), and using (16) we again find that
lim, o (1/1) f3f7q(7) d7 ds = —o0, contradicting (A2) and (A3).

—i[j:" j (x'(7)2F2(x () dr ds —x(T,.)] =-

Js (x"(7))*F*(x(7)) dr ds
Tn T T

T
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This completes the proof of the theorem, and the corollary follows from the
remarks in § 2.

Proof of Theorem 2. If we assume that b, <c0 and that (N) has a positive
nonoscillatory solution on [T, 0), then the only possibilities in the preceding argument
that need to be considered are

I. x'(t)F(x(¢))e L*(I), in which case it was shown that the left-hand side of (16)
must have a finite limit as ¢ > 00, and

II. x'(0)F(x(t)) & L*(I), b. <0, in which case it was shown that the left-hand side
of (16) must tend to —o0 as ¢t > 0,

Theorem 2 now follows.

Proof of Theorem 3. Since fe %,, we may choose k >1 in accordance with the
conclusion of Lemma 2. We have

t
j q(s) ds=r*P()+O(* ™),
T
where P is a honconstant periodic function of period @ and mean zero. Define P_(¢) to

be

{P(t), P(1)=0,
0, otherwise,

and for £ >0, define

P(t), P(t)ze
Pi(t)= {
+0) 0, otherwise.
Since P has mean zero we may choose ¢ sufficiently small that
(n+1)e (n+1)w
+
(22) I—(—Z—IJ Pi(p) dt+j P_(t)dt=0, n=1,2,--

Define ¢ (¢) to be a continuous function with

k, if P(t)=e,

¢(’)={1, if P()=0

and 1=¢(¢t)=k for all . Then ¢ € ®,.
For Nw =t < (N + 1)w, we have

J é(s) qu(f) drds ;j & (s)s*P(s) ds +O(t")
T T T

= jtqb(s)s)‘P(s) ds +O0(t")
0

(n+1)w

N-1 (n+Dw N
@) =k % (nw)*j Pi(s)ds+ Y ((n+1)w)*j P_(s) ds+O(c)

no n=0 nw
1 N-1 w
k- = (nw))jo P%(s) ds+O(N"), by (22)
gAtA+l

for some positive constant A, independent of ¢, for all sufficiently large &
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Now we return to (15), multiply throughout by ¢ (¢), integrate between T and t = T
and divide throughout by [7¢(s) ds to obtain

m Lqﬁ(s) L q(7) drds
24) "

t

_ s w22 [ ,
=2~ ds[Lrb(S)j (¥ (R F(x(r) drds - [ (s)x'(s) ds]-

T T

By (23), the left-hand side of (24) tends to +00 as ¢ 00, Define w(¢) to be |x(T)|+
[r1x'(s)| ds. Then x (£) = w(¢), (x'(¢))*> = (w'(¢))>. Since f € Fo, F(x) is decreasing in x (see
proof of Lemma 2) and so we have 0=F(w(¢))=F(x(¢)). Now suppose that
x'(t)F (x(¢)) e L*(I). Then w'(t)F(w(¢)) € L*(I), and following the analysis of case II of
Theorem 1, we may deduce that w(s)/t->0 as t—>oco. It follows that
1/ ]'Td)(s)x'(s) ds - 0 as t > 00 and so the right-hand side of (24) has a finite limit as
t-> 00, yielding a contradiction. On the other hand, if x'(£)F(x(¢)) & L*(I), we may use
Lemma 2 to deduce that the right-hand side of (24) has the limit infimum —oo as ¢ - 00,
and again we have the contradiction. This completes the proof of the theorem. (We
note that f € %, implies that b, =0.)

Remarks. If q(t) = t*p(t) where A is a real number and p is a nonconstant periodic
function of mean zero, then for a >1, (N,) is oscillatory iff A =—1. The case A >0
follows from Theorem 3, the case A = 0 was proved in[5], and for A <0 is a consequence
of Theorem 2.3 of [4]. For 0<a <1, (N,) is oscillatoryif A =1 or A =0, thecase A =1
following from Theorem 2. The case A =0 was proved in [5]. If A <0 or 0<A <1, the
oscillatory character is unknown, but we conjecture oscillation iff A = —a.

For the case @ =1, we refer to [17].
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A FREE BOUNDARY OPTIMIZATION PROBLEM. II*

ANDREW ACKERf

Abstract. Given a compact set Q < R2, a function a(p)>0 continuous on R 2, and a sufficiently large
constant A >0, we determine (under suitable assumptions) the doubly-connected region Q< R? encircling

(but not intersecting) Q which has the least capacitance subject to the constraint that || == [f,, a 2p)dxdy=
A.

1. Introduction and main results. Our purpose is to generalize the isoperimetric
inequality [2, Thm. 2 (Case 1)], which involved the capacity of a condensor. We will use
the notation introduced in [2, § 1]. This investigation is motivated by the following free
boundary optimization problem.

Problem 1. Given a simply-connected, compact set Q < R (whose boundary 4Q
has bounded curvature), a function a(p)>0 continuous on R?, and any constant
AeR,=(0,0), we seek a doubly-connected region {2 which has minimum capacity
subject to the constraints that $* > Q (i.e., Q encircles Q without intersecting it) and
10| = [f, a®(p) dxdy = A.

In [2], Problem 1 was solved for all A € R, in the special case where Q is convex
and a(p)=1 on R’. In this paper, we succeed in solving Problem 1 for all sufficiently
large A € R, under considerably more general assumptions concerning Q and the
function a (p).

We seek a solution () with the property that

1) S$*=0Q,

i.e., Q) does not separate away from the geometric constraint Q. It follows by applying
the Poincaré variation formula for capacity [2, (3)] that a sufficiently regular region ()
satisfying (1) can solve Problem 1 only if () satisfies the following conditions:

(2 [VU(p)|=c-a(p) onT
and

(3) VU(p)|=c-a(p) onT*=3Q
for some value c € R, and

4) |0 =A.

(For p e T*UT, we define |[VU (p)| =lim,., [VU(q)], g € Q, when the limit exists.)

For each c e R,, (1) and (2) constitute a well posed free boundary problem under
the conditions of the following theorem. (See [1, Lemma 11], [3] and [5].)

THEOREM 1. Assume that Q is starlike relative to some point poc Q, and that
A a(po+A - (p—po) is (weakly) monotone increasing in A €[1, ) for each p € 4Q.
Then

(a) For each c<R., there exists a unique region Q. such that S¥=Q and
IVU.(p)|=c-a(p)onT..

(b) Q. <Q, whenever 0<c=c'<, and U,_,, T.=R*\Q.

() QU is starlike relative to po for each c € R..

* Received by the editors December 9, 1977 and in revised form May 15, 1978.
+ Mathematisches Institut I, Universitat Karlsruhe (TH), 75 Karlsruhe 1, Federal Republic of Germany.
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Under the assumptions of Theorem 1, there is for each A € R, aunique ¢ € R, such
that |Q.| = A. Since each region Q,, ¢ € R, is the unique solution of (1) and (2) at the
area A =|Q|, it is clear that Problem 1 has no sufficiently regular solution at the area
A =|Q,| which satisfies (1) unless . satisfies (3), i.e., [VU.(p)|=c - a(p) on T¥ =3Q.
Thus, it remains to answer two questions.

1. For what values of ¢ € R, does (), satisfy (3)?

2. Assuming (). satisfies (3), is ). a solution of Problem 1 at the area A = |Q,|?.
Both questions are answered (the second affirmatively) by the following theorem, which
is our main result.

THEOREM 2. Assume in Problem 1 that Q is starlike relative to poe Q and that
A - a(pot+A - (p—po)) is (weakly) monotone increasing in A €[1, ) for each p € Q. If
log (a(p)) is subharmonic in R*\Q, then:

(@) There is a value 0= Cy=00 such that VU,(p)|=c - a(p) on dQ only for those

c € R, satisfying ¢ =Co. In fact |VU.(p)|=c - a(p) throughout CL(Q.) if
ce[0, Co]N R, (where CL = Closure).

(b) If c€[0, ColN R, then

() K=K,

for any region Q satisfying S* > Q and |Q| =|Q.|. Thus, Q. solves Problem 1 at
the area A =|Q.|.

(c) If Co<c <0, then (5) does not hold for all admissible Q, and Q. does not solve

Problem 1 at the area A =|Q.|.

Remark 1. For the purpose of discussing uniqueness in the context of Theorem 2,
we define C;e(0,0] as follows: If Q={peR>:|p—pol=ro}, then C;=
(1/a - log (r1/ro)), where ri €[ro, 0] is the maximum value such that |p —po| - a(p) =
@ € R, throughout R(ro, r1) ={peR*:ry<|p—po|<ri}. Otherwise C;=0. Notice
that Cy = 00 whenever C; < 0. Under the assumptions of Theorem 2, if 0 <¢ = C; <

or if C; =00 and ¢ €[0, Cy]N R,, then the proof of (5) in § 5 can be extended to show
that actually

(6) K>K,

for any region Q # Q). satisfying $* > Q and |Q|=|().|. Thus Q. is the unique solution of
Problem 1 at the area A = (). |. Equation (6) does not hold if C; < ¢ < 0. In this case, the
(only) solutions of Problem 1 at the area A =|Q).| are the annuli R(o, 7), where
r=0<t=r,7<00,and (7/0)=exp (A/(2m)).

Remark 2. Assume a(p) =8 - (1+|p|)°> " in R* for some 0 < § < 1. Then under the
assumptions of Theorem 2, one can show that Cy >0, and therefore that Problem 1 has
a solution satisfying (1) for any sufficiently large A € R,. If a(p)=1in R?, then Cy =
(i.e., Problem 1 has a solution satisfying (1) for all A € R.) if and only if Q is convex, as
was shown in [2, Thm. 2].

Remark 3. Under the assumptions of Theorem 2, the regions Q. c €[0, Co]N R,
have the following area-minimizing property equivalent to Theorem 2(b): Q.
minimizes |Q| in the class of all ) which are conformally equivalent to ). and satisfy
S*> Q.

Remark 4. Under the assumptions of Theorem 1, it was shown in [1, Thms. 10 and
12] that

(7) K-K. gcz : (chl_IQI)

for any ¢ € R, and Q satisfying $* = Q, and that in fact each region Q,, ¢ € R, uniquely
minimizes capacitance in the class of all () satisfying $¥*=Q and |Q|=A =|Q.]|. If
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Co € R, one can show using (5) and (7) that (7) holds for any ¢ € R.. and any () satisfying
$*>Q and |Q|=|Qg).

2. The proof of Theorem 2(a). For each c e R., [VU.(p)|=c¢ : a(p) on 4Q if and
only if the same inequality holds throughout CL((),). Indeed, this immediately follows
by applying the maximum principle to the function ¢.(p) := log (VU.(p)|/(c - a(p))),
which is continuous on CL({).) and superharmonic on (2., and which vanishes on I',.
Thus, to prove Theorem 2(a) we must show that

(8) H=[0,GC]NR.

for some C,€[0, ], where H ={c e R,:|VU.(p)|=c - a(p) on dQ}. Since H is closed
relative to R., it suffices to show for each ¢ € H that ¢ — 8 € H for all sufficiently small
8>0. We will prove this under the further assumption that a(p) is analytic in each
coordinate variable. For each ¢ € R, it follows using Lewy’s theorem [4] (see Lemma 5)
that (U.(p)/c) has a harmonic continuation V_(p) to Q.U O,, where O, is a neighbor-
hood of .. If ¢.(p) :=1log ((VV.(p)l/a(p)) on Q.U O, then by the strong maximum
principle, either ¢.(p) =0 in Q. (only possible when (). is an annulus) or else ¢.(p) >0
in Q., implying that D,¢.(p) >0 on I'. (where D, differentiates in the interior normal
direction). In either case, we conclude easily that ¢.(p) =0in O,\Q,, where O, < O, isa
suitable neighborhood of I'.. Thus, for § > 0 sufficiently small (so that Q._;UT._s<
Q.UO,), we have that [VV,(p)|=a(p)=|VV.-s(p)| on I'.—s. Therefore, if Ws(p)=
Ve-s(p)— Ve(p), then D,Ws(p)=a(p)—|VV.(p)|Z0 on I.-s Since W;(p)=
(1/(c—8))—(1/c) on 8Q, it follows from the maximum principle that Ws(p)=
(1/(c=8))—(1/c) in Q._s, implying that |[VV,_s(p)|=|VV.(p)|Za(p) on 3Q. There-
fore ¢ — 6 € E, proving (8) in the case where a (p) is analytic in each coordinate variable.

To prove (8) in the general case, we will show that (0, c]J< H if ce H. For ce H
fixed and for each n € N, one can define a function a, (p) with the properties assumed of
a(p) such that a,(p) is analytic in each coordinate variable, a,(p)=a(p) on
3Q, a,(p)=a(p) on T, and |a,(p)—a(p)|<(1/n) in Q. It suffices to show that
(0,¢lcH, ={ceR,:|VU,.(p)|=c - a,(p) on 8Q} for each neN, where Q, . is
defined such that S . = Q and |VU, .(p)|=c - a.(p)onT, . Now ¢ e H, foreachn € N,
since Q,:<Q; and therefore |VU,:(p)|=Z|VU:(p)|=¢:a(p)=c:a.(p) on Q.
Therefore (0, ¢]< H,, for each n, since (8) has already been shown to hold when a(p) is
analytic in each coordinate variable.

3. Preliminary lemmas for the proof of Theorem 2(b). Let F(z): R X (0, 1) > Q be
a K-periodic, analytic mapping onto Q. F(z) can be defined to be the analytic
continuation of E~'(—jz) to R x(0, 1), where E(z)=U +jV(j =\/——1) and V(p) is a
harmonic conjugate of U(p). The mappings F;(z) and F;(z) are defined analogously
relative to the regions Q) and §; defined in this section.

LEMMA 3. Let Q be starlike relative to po€ Q, and assume A - a(po+A - (p —Ppo)) is
(weakly) increasing in A €[1, o) for each p € 3Q. Let Q¢, ¢ € R, and Q) be regions such
thatS¥ =Q,|VU:(p)|=¢ - a(p) on Ty, 8* > Q, and Ao = |S:\S| =|S*\Q|. Then for any
8>0 and n € N satisfying n - = Ao, there exists a sequence of regions Q,i=0,---,n,
with the following properties:

(a) Qo = Qé‘.

(b) S?“C.S'i"+1and$i3.5".-+1,i=0,-'~,n—1. :

() S$*and STU ), are both starlike relative to Do for all i.

(d1) For each i, |NU;(p)| = c: - a(p) on I'; for some constant c;>0.

(d2) If log (a(p)) is subharmonic in R*\Q, and if ¢ = Cy, then |VUi(p)|=c; - a(p)

throughout ), for each i.
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(e) |(S,+1\S?‘) NS* =|(S\S:+)\S|=8,i=0, -, n—1. Thus |[(SF\Q)NS*|=
[(S:\S)\S| =i - & for each i.

Proof. For § >0 fixed, we prove the lemma by induction on n. The assertions are
trivial for n = 0. If Qq, - - -, Q,, satisfy (a)- (e), andif (n+1): § = Ao, thenby Theorem 1
there exists a unique smallest region O, >, such that §* = S’,'.‘, (S, \S:)\S| = &, and
IVU (p)|=¢é. - a(p)on [, for a constant 0< &, <c,. We define Q,,.; =9, (0, A), where
0 <A <1 is the largest value such that |S* N, (A, 1) = 6. (Here Qa, B) i={peQ:a<
U(p)<B},0=a<B=1.) That O, - -, Q. satisfy (a)—(e) (with (n +1) substituted
for n) is easily seen from the construction of O,..1 and the following considerations.
Concerning (c): Since S¥ is starlike relative to p,, Theorem 1(c) implies that S*., U
Q1= S*¥UQ, is starlike relative to po. Therefore, assuming po=0, we have that
ln(2)| = /2 on R x{0, 1}, where w,(z) = arg (D.Eu(z)/Ex(2)) is harmonic in R X
(0, 1). Therefore |i,(z)|=m/2 throughout R X[0, 1], implying that $¥,, = S*U
Q,(2,1) is star-like relative to po=0. Concerning (d1) and (d2): |V U,.1(p)|=
(|VU (pl/A)= (C,,/)l) a(p)=cns1-a(p)on Ty = [',.. Furthermore, if log (a(p)) is
subharmonic in R*\Q and |[VU,(p)|Zc.-a(p) in Q, then A - (VU,.1(p)—
1 a(P)=(VU.(p)—é, - a(p))=0 in Q.1 =, by application of Theorem 2(a).

In the proof of Theorem 2(b) in § S, we will make use of the following stronger
assumptions concerning Q and the function a(p):

(A1) Q is compact and starlike relative to each point pe
B,(po) = {p € R”:|p —pol <p}, where p >0 is sufficiently small. Also, 3Q has bounded
curvature.

(A2) A -a(p+A - (g—p))is (weakly) increasing in A €[1, o) for each p € B,(po)
and q € 9Q, where p >0 is sufficiently small. Moreover, log (a(p)) is subharmonic in
R*\Q and a(p)=a >0in R?, g a constant.

(A3) a(p)=al(x, y)isareal analytic function of each coordinate variable in R 2\Q.

LEMMA 4. Assume in Lemma 3 that Q and the function a(p) satisfy (A1) and (A2),
and that ¢ = Cy. Then all the estimates given in [2, Lemma 7] (except [2, (19)]) apply to
the regions Qi =0, -+, n=[Ao/8] defined in Lemma 3." Further, for any a €0, Ap)
we have:

9 d0,T)=R(a)<

uniformly over all sufficiently small §>0 and i =0, - - -, [a/8].

Proof. We omit most of the details, since the proofs already given in [2] (for Q
convex and a(p) = 1) still apply after certain adjustments. The main difference is that $¥
and S ¥*UQ,i=0,--,n,are no longer convex. Therefore Lemma 3(d2) replaces [2,
Lemma 5(c)] in the proof of [2, (13)]. In order to prove [2, (14)-(18)] by the procedure
in[2], the inequalities: 7 = |w\S|=u - d(v*, v) and [2, (20)] must be replaced by similar
estimates based on the fact that $¥ and $* U, i =0, - - -, n, are all starlike relative to
B,(po) (as follows from (A1), (A2), and Lemma 3(c)). As replacement for the first
inequality, we have 7 =|w\S|=Qma’F - d(v*, v)/p), where w = Q for some i, F=
d(po,T), a=sup{a(p):peS*UQ},|-| refers to area weighted by a’(p), ®(p) = {p+
A(p—q):q€B,(po), A =0}, and n =inf {{QND(p)|: p € $*}. [2, (20)] can be replaced
by the inequality: & =(7F8C;/(pa’N(a))), where C; and N(a) are defined in [2].
Equation (9) is obtained as in the proof of [2, (18)].

LEMMA 5. In Lemma 3, if Q and the function a(p) satisfy (A1), (A2), and (A3),
and if ¢ = C,, then for any fixed a €[0, Ay) there exist constants n€ R, and 0<o=71<
00 such that Fi(z):R x(0,1)->Q; can be analytically continued to R x(—n, 1), and

! Here, [x] denotes the greatest integer function.
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o =|D,F,(2)| = r throughout R X (—n, 3), both uniformly foralli=0, - - -, [a/8] and all
sufficiently small 5 > 0.

Proof. That each function F;(z) can be analytically continued beyond the boundary
R x {0} follows from Lemma 3(d1) and Lewy’s theorem [4]. That the analytic continua-
tions have the asserted uniform properties can be shown essentially by applying the
estimates in Lemma 4 to the proof in [4].

LEMMA 6. Assume in Lemma 3 that Q and the function a(p) satisfy (A1), (A2), and
(A3), and that ¢ = Cy. Then for any fixed a €[0, Ao), we have:

(10) | IVU:(p)| = IVUi(@)| |=M - |p—q] in ©:(0, %),

(11 Curvature(T)) =M

and

(12) Curvature(TH)=M

for some constant M € R, uniformly over alli =0, - -, [a/8] and all sufficiently small
§>0.

Proof. Since log (|D,F;(z)|) is harmonic in R X (-, 1), it follows using the estimate
in Lemma 5 that the functions V log (|D,F;(z)|), are uniformly bounded over R X
(—(n/2),1/2) for all i=0,--,[a/8] and all sufficiently small § >0. Equation (10)
follows from this, since [VU;(p)| - |D.F;(z)|=1 for any Fi(z) = p € (.. Equation (11)
follows by a similar argument based on Lemma 5 and the fact that the curvature of fi at
pel is given by Curv (I';; p) = |D, arg (D,F;(x))|/|D.F;(x)|, where p = Fy(x),x<€R.
The more detailed proof of (12) is deferred to the Appendix.

4. Heuristic demonstration of Theorem 2(b). For ceR., fixed, let Q=
R\(QUSUS:), where ¢ € (0, c] is chosen such that Ag = |S:\S| = |S*\Q)|. Since |{})| =
Q] +]S*\Q| - |S:\S| = Q| = ||, we conclude from [1, Thm. 12] that K > K, whenever
Q # Q.. Therefore (5) follows if

(13) K=K

For neN large (and for 6§ =Ay/n), we define the regions ﬁo, cee, Q.. such that
$;=SUS; and §* = §*N §* for each i, where Qo - - - , (), were defined (relative to Qs
and Q) in Lemma 3. (See [2, Figs. 4 and 5].) Notice that Q=0 =K,=K) and
0. =0 (:>I%,, = K). To demonstrate the plausibility of (13), we will argue that the
values 120, K L', I{',, are essentially monotone increasing. To the extent that the

Poincaré variational formula for capacity [2, (3)] is applicable, we have approximately
that

(14) oK =K., -k, =J

Y

VORI - 8n(p) - | dpl- | IVOUP - 8n(p) - | do),

i=0,---,n—1, where y*=1¥N Interior (S*) and v, = I")\S. Using Lemma 3(d1 and
d2)A and [2, Lemma 4], we see that |[VU:(p)|= LVU,(p)l= ¢i-a (P) on v wPereas
[VU:(p)|Z|VUi(p)l=zc: - a(p) on y¥. Moreover, Q1| — Q| = |S\Si1| = 1S¥1\S¥|=0
foreach i=0,---,n—1, by Lemma 3(e). Thus, (14) becomes
Ria-Rize? ([ a*p)-on(p)-Idpl~ [ a*(p)- an(p)-|dpl)
(15) Yi Yi
= C% . (lﬁi-ul - |ﬁ,|) =0.
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5. Proof of Theorem 2(b). As was shown in § 4, it suffices to prove (13). However,
the argument in § 4 leading to (13)is incomplete. In fact the harmonic measure Ui(p) of
£'# in Q; need not exist, since §¥ = $* N $¥ could contain isolated points. Further, the
error in (14) and (15) has not been examined.

In this section, we will first prove (13) (and hence (5)) in the case where Q and the
function a(p) satisfy (A1), (A2), and (A3), and then extend (5) to the general case.
Under assumptions (A1), (A2), and (A3), the proof of (13) is very similar to the proof
already givenin [2, § 6] that K =K. Indeed, if (in[2, § 6]) we interpret ||, |S*\Q|, etc.,
to be areas weighted by a X p), andif Q. c € R., and 0, i=0,--,n,are understood to
be the regions defined in Theorem 1 and Lemma 3 (mstead of [2, Thm. 1 and Lemma
6]), then the proof in [2, § 6] that K =K is valid up to [2, (27)] after one makes the
following minor correction: Given £ >0 (in [2, (22)]), one must choose « € [0, A,) such
that QN ®(p)| = Ao—a foreachpe ., where ®(p)={p+A(p—q):q € B,(po), A =0}.
One can then show that S;< §. for a =i - § = A, just as before (preceding [2, (23)]),
even though S¥* U, is only starlike relative to B, (po) rather than convex.

In [2, (27)], we have, using Lemma 3(d2), that

(16) |VU(p)zIVUi(p)lzci - alp) infli=0NQ  i=0,---,n—1.
By applying Lemmas 3(d1) and 4, we find that
(17) VO(p)=(1+M-8)-¢;-a(p) onli=I, i=0,---,[B/s].

In (17), and throughout this section, M represents a (fixed, but arbltrary) finite constant
which is independent of sufficiently small § > 0. By substituting (16) and (17) into {2,
(27)], we see that [2, (28)] generalizes to

- 1@ Wz (/) ([ ap)- Witp) - 1dpl~(1+M - )
18 YilA

[ a0 Wio) - 1apl),

i=0,---,[B/8]—1. By substituting the boundary conditions (in [2]) for W;(p) and
takmg the limit as A -1 —0, we obtain

a9 aza- (] ap)- A=) ldpl-1+M-8)- | alp): Tis(p) - ldpl),

vi+1 Yir1

i=0,---,[B/8]—1, where vy{ and v, are defined preceding [2, (26)]. Therefore, in
order to prove [2, (24)] and hence [2, (22)] and (13), it suffices to show that

0) 7F = | ap)- (1= Up) - ldplzci-5-M -8

and

@y Ji= | a(p)- ietp) - dplS cio - 5+ M - 5%

Indeed, one easily sees by substituting (20) and (21) into (19) and utilizing the estimates
in Lemma 4 that

(22) Az=-M-8%, i=0,---,[B/8]-1.

We now prove (20). For any pel¥, i=0, -+, n=(A,/8), let li(p) be the
(shortest) line segment which connects p to I'f and is perpendlcular to I'%,; at p, and let
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6n,(p) be the length of I;(p). It follows from [2, (17)] and §* > §* (where yi=I¥NS)
that of © ($%:\S¥)NS* and |} |=|(SE1\SF)NS*|=8,i= ,[B/81—-1,if 6§>0
is sufficiently small. Thus, one can show using [2, (17)], (9), (12), and (A3) (which
implies the Lipschitz continuity of a(p) over any bounded set) that

(23) j a’(p)-én(p)-|dp|+M - 8°=|o¥|Zz86>0, i=0,---,[B/8]-1.

T i

On the other hand, it follows using Lemma 3(d2) that

ey 1-Up)= NO@I lalza| a-ldza - ap)- Lin(p)
Tilp Tilp
for anyz =0, -+, nandp € y#1, where 7;(p) is the curve of steepest ascent of U, from D

to I'f, p’ e :(p), and L(-) denotes arc length. One can show using [2, (17)] and (12)
that

(25) L(ri(p))=6éni(p)—M - 8 ony:il, i=0,---,[B/8]-1.

Furthermore, L(7:(p))=M - 6 on y¥.q,i= [3/5] 1, as follows from a(p)=gq,
(24), and various estimates in Lemma 4. Therefore after substituting (25) into (24), one
can show using (9), (A3), and [2, (15)] that

(26) 1-Ui(p)zci - a(p)-én(p)-M -8 onyki, i=0,---,[B/8]-1.
By multiplying (26) by a(p) and integrating over v}, we obtain

(27) J:*zci-j*az(p)-ani(p)-ldpl—M-az, i=0,---,,[/8]-1.

Yiv1

Now (20) follows by combining (23) and (27) and using [2, (15)]. We omit the quite
similar proof of (21).

This completes the proof of Theorem 2(b) under the additional assumptions (A1),
(A2), and (A3). It remains to show that these further assumptions are superfluous. Let
Q and the function a(p) have the properties assumed in Theorem 2, and let ce
[0, Co]JN R.. For each n € N, the set Q, := CL(QUQ.(1—1/2n, 1)) is starlike relative
to B, (po) for p, >0 sufficiently small, as follows by applying the strong maximum
principle to the function: arg (D.F.(z)/F.(z)), as in the proof of Lemma 3(c). In order to
show that assumptions (A1), (A2), and (A3) are superfluous, it suffices to construct a
sequence of functions {a, (p)} uniformly convergent to a(p) over Q. U Q, such that for
each neN, a,(p) satisfies (A2) and (A3) relative to Q,, a,(p)=a(p) on 38Q,, and
a.(p)=a(p) onT..Indeed, if the functions a,(p), n € N, exist, and if w,, is defined such
that s¥ = Q, and |Vu,(p)|=c, - a,,(p) on vy, (where ¢, =c¢/(1—1/2n)), then it follows
that |Vu,(p)|Zc. - a,(p) on vy} =93Q,. Thus, if {w,,} is any sequence of regions con-
vergent to  (in an appropriate sense), such that §%* > Q, and |@,|, =|wx|. for each
neN (where |- |, denotes area weighted by a2(p)), then k, =k, for each n, since (5)
holds under the additional assumptions. Therefore K — K, = lim, .« (k. — k,,) =0 under
the assumptions of Theorem 2 only.

For the construction of the functions a,(p), n € N, we can assume without loss of
generality that po=0 and A - a(Ap) is weakly increasing in A € R, for each p € R”. Let
¢ (p) be a sufficiently smooth function on R? such that ¢(p) <0 in Qy, ¢(p) >0 outside
QUQ,, ¢(Ap)+log (1) is increasing in A € R, for all pe R?, and V?¢(p)=6>0 in
Bs,(0), where v =sup {|p| : p e QU Q.}. If a(p) is Lipschitz continuous in B3,,(0), then all
above requirements for the sequence {a,(p)}, except that each function a,(p) satisfy



208 ANDREW ACKER

(A3), are fulfilled by the functions a,(p), n € N, defined on R? as follows.

ax(p)=max{a(p) - exp (¥(p)/n), a -exp (u - (p=(2»)").)},  |p|=3w
=g-exp(u-(p-2»)?%), |pI>3y
where (x).=max {x,0}, a =inf{a(p):pe€ B3,(0)}, and uw e R, is chosen such that

a,(p)=a - exp (5u2®) for |p|=3wv. In general, the functions a,(p), n €N, defined
(using polar coordinates, i.e., p = (r, 0 +2mm), m =0, 1, +2,- - ) by

ar,0)=exp| [ j Gu10g (1), 0~ 0') - log (as(+', ) - (dr'/ ) ']

(r,0)e R, X R, satisfy all requirements, where G,(x,y)=(1/me,)  exp (-(x*+
y%)/€n), €x = 0 as n >0, and each &, > 0 is sufficiently small.

Appendix: The proof of (12). For § >0 fixed (in Lemma 3), we deﬁne Bily)=
max {ID arg (D,Fi(x +jy))|:xeR},i=0,1,--,[Ao/8]. The functions Bily),i=

0,1, ,[Ao/8]—1, are defined analogously relatlve to the F;(z). The curvature of I'¥
atpe F?‘ is given by
(A1) Curv (I'f; p) = |D; arg (D.F;(x +)))|- [VUi(p)|

=|D, arg (D.Fi(x + )| IVUi(p)l,
where Fi(x +j)=p = 15";()2’ +J), %, X € R. Therefore
(A.2) Bi(D)= - Bi(D),
where w; =max {{VU;(p)|/IVUi(p)|:p e ¥ =1'*}. Further, one can define Fi,1(z)=
Ei((1—¢;)z) on R x[0, 1] (where Ui(p) =1—e¢; on I'%,,), implying that
(A3) Bi()=(1-&) Bi((1-e)y), O=y=L
Since D, arg (D,F:(z)) is harmonic in R X (0, 1), we have
(A4) Bi(l—e)=e; - Bi(0)+(1—e) - Bi(D).
By combining (A.2), (A.3), and (A.4), we obtain
(A.S) Bir1(1)=Bi(1) = (ui—1) - Bi(1) +&; - B:(0).

Now, for any fixed a € [0, Ay), there exist finite constants My, M5, and M; such that if
8 >0issufficiently smalland i €{0, 1, - - - ,[a/8]}, then0=u;,—1=M; - S and 0=¢; =
M, - 8 (both due to Lemma 4), and 0= B:(0) = M5 (due to Lemma 5). Equation (A.5)
reduces under these conditions to

(A6)  (Binn(1)=B:(1)/8)=M;-B:(1)+M>-Ms, i=0,--,[a/8]-1.

Now (12) follows directly from (A.6) and the fact (followmg from (A.1)) that 8;(1)=
(Curvature (3Q)/C), C defined in [2, (12)].
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STRONG SOLUTIONS FOR INFINITE-DIMENSIONAL RICCATI
EQUATIONS ARISING IN TRANSPORT THEORY*

HENDRIK J. KUIPERt AND STEVEN M. SHEW#

Abstract. The main result gives conditions under which the Riccati equation S'(f)=
A()S(t)+S(t)B(t)+ S(t)C(t)S(t) + D(¢) with initial condition S(0) =S, has a strongly differentiable solu-
tion. In addition, equations of more general form, but with more restrictive initial conditions, are shown to
have solutions which are differentiable with respect to the uniform topology. These results, as well as their
proofs, are discussed in the context of an important problem in transport theory.

1. Introduction. Let Z be a separable Hilbert space over the complex field and let
ZL(%) be the Banach algebra of bounded linear operators on . When we wish to
distinguish between the uniform, strong, and weak operator topologies on (%) we do
so by using subscripts: L(%X)., £(Z)s and L(Z)w. The Riccati initial value problem

S'=A(t)S+SB()+SC(t)S+D(z), 0<t<T,
S0)=Soe L (%),

1

where S is an £(&)-valued function (or distribution), arises in certain problems in
transport theory as well as in optimal control theory. In such settings the operators A(z)
and B(¢) are often unbounded closed operators rather than bounded operators on Z.
This complicates questions of existence and uniqueness. Indeed, one must first decide as
to what will constitute a solution. We call S a distributional solution if (1) is interpreted
as an equation of vector-valued distributions and S’ is the distributional derivative of S.
When the derivative is to be interpreted in the uniform (resp. strong, resp. weak) sense
we call S a uniform (resp. strong, resp. weak) solution. Unless one puts restrictive
conditions on the initial value S, (see e.g., [14]) it is pointless to look for uniform
solutions. We note that even the very simple equation S’ = AS, S(0) = I, does not have a
uniform solution unless A is bounded.

Existence theorems for infinite-dimensional Riccati equations with unbounded
coefficients have been obtained by various authors such as Da Prato, Lions, Lukes,
Russell and others (e.g., [2], [3], [8]). The earliest work seems to be due to Lions [7] who
via a theorem on the existence of an optimal control was led to an existence result for
what essentially are distributional solutions of (1). Tartar [13] extended these results to
more general equations of the form

S'=AS+SB +d(S),
S(0)=So

(2)

and also obtained many qualitative results including certain regularity results, such as
strong continuity from the right, and a priori estimates. At about the same time Curtain
and Pritchard [1] obtained existence of weak solutions for (1). In another vein Temam
[14], by restricting himself to the space 5, of Hilbert-Schmidt operators with its natural
Hilbert space structure, was able to obtain existence of distributional solutions by
employing a constructive approximation procedure. He also obtained regularity results,
for example showing that S’ € Lo((0, T), %,).

* Received by the editors August 21, 1978 and in revised form January 30, 1979.
t Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
+ Department of Mathematics, University of Houston, Houston, Texas 77002.
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Our first result will concern uniform solutions of (2) within the subspace % < £ (%)
of compact linear operators, thus extending certain results of Temam. We then proceed
to prove existence of strong solutions for (1). This strengthens the results of Curtain and
Pritchard. Since our method of proof seems to blend very nicely with the physical
aspects of certain problems in transport theory we feel it is important for us to say a few

words about this topic. For more information the reader is referred to [9], [11], [15],
[16].

2. Transport theory. Consider a slab of material which lies perpendicular to the
&-axis and extends from ¢ = x to £ =y > x. Suppose this slab is subjected to an input
(e.g., a flux of radiation) I, (x) on the left and an input I_(y) on the right. This results in
an output I_(x) on the left and an output I.(y) on the right. We assume that I.(x) and
I.(y) can be regarded as members of some Hilbert space #, and that the transport
properties of the slab can be described by an operator S(x, y) € L(¥ @ 3):

[0 =swn[ o] =[in pene]

Here t(x,y), 7(x,y), p(x,y), r(x,y)e £(¥) and are called, respectively, forward
transmission, backward transmission, forward reflection and backward reflection
operators. One can show that for x <y < z, cascading of S(x, y) and S(y, z) (i.e., putting
two slabs into physical contact at £ = y) yields:

S(y, 2)=8(x, y) * S(y, 2),
where * is a product introduced by Redhefter [10] and is defined by

[tl Pl] . [tz Pz] =[ LI—pir) "'t Pz+t201(1“r201)_172]
rn T r T2 r1+~rlr2(I—p1r2)"1t1 Tl(I“’zpl)_l‘l'z '

Clearly this product does not always exist. The physical interpretation for this is that the
juxtaposition of two slabs may produce an amount of material in excess of “critical
mass” or “critical length”.

Assuming S(x, y) to be differentiable with respect to y in some sense one can
obtain the equation

(3) Sy(x, y)=A(y)S(x, y)+S(x, y)B(y)+S(x, y)C(y)S(x, y)+D(y),

where S(x, x) =1, and

O S ) M P S

T(y)=t,(x, Y=y,  R(y)=ry(x, ¥)x=y
Q) =7y(x, Ylx=y»  P)=py(x, y)lx=y-.

and

There are various equivalent ways to linearize this problem, one of which is to
essentially carry out the optimal control theoretic methods (this is intimately related to
the definition of solution in [13]). Another method, which applies in the above problem,
is to transform S(x, y) into a new operator S (x, y) which takes the left input and output
and maps them into the right input and output. Of course S is not always well defined,
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but when it is its graph is obtained from that of § m:?rely by interchanging second and
fourth entries. We have ([9], [11]), S; * S, =S,S,, $=§, and

T(y) P(y)
R(y) Q(y)

Under certain reasonable assumptions S(x, y) is, for fixed x, a strongly continuous
semigroup of linear operators. However, since the transformation - does not preserve
strong continuity or strong differentiability it is of no use in obtaining strong solutions
for (1). We however note that our results can be rephrased to say that S(x, y), for fixed x,
is locally a strongly continuous semigroup of operators with respect to the *-product.

There is an interesting connection between our method of handling the existence
question and certain physical situations (e.g., a slab geometry for equiflux surfaces in the
transport medium) where the transport operators S(¢) can be decomposed,

S=Sl+S2=|:t1 0]+[t2 p],
0 T1 r T

into their specular, S1, and diffuse, S, parts ([11], [15], [16]). An investigation of the
*-product shows that the specular part of S(x, z) is simply the ordinary composition of
the linear operators S,(x, y) and S,(y, z), and that S;(x, x) is the identity on % @ :

4) Si(x, z)=81(x, y)S1(y, 2),  Si(x,x)=1
Letting

S,(x, y)=[ ]g(x, y).

a; 0 0 0
i= ’ [ ’ '=1, ’
4 [0 o]' B [o b,] =12

where a;(x) =limy o (¢;(x, x + h)—1I)/h, b; =lim o (7:(x, x + h)—I)/h we may write (3)
as

S'=(A1+A,)S+S(B1+B,)+SCS+D, SO)=1,

where A,, B,, C and D can be expected to be compact (see e.g., [11]). In this situation

one can also show that the diffuse part, S, satisfies a Riccati initial value problem of the
form

S, =E()+F(t)S,+S5,G(t)+ S,CS>, S,(0)=0,

where E=D+ A,8,+8:B,+85,:CS1, F=A+S,C, G=B+CS; with E and C being
compact. Now (4) and physical considerations suggest that the operators A; and B;
(and hence also A and B) should be generators of strongly continuous semigroups of
contractions on # @ . We note that the hypotheses of our main result, Theorem 8,
are in very close agreement with those dictated by the above physical considerations.
Finally, our main results, Theorems 5 and 8, show that the solution to the above
transport problem is equal to the sum of a strongly differentiable specular part and a

uniformly differentiable diffuse part provided the hypotheses of Theorem 8 are
satisfied.

3. Preliminary results. We recall that the numerical range of a linear operator L is
defined to be the set

{zeClz =(Lx, x), x e D(L), |x||=1},

where 9(-) denotes the domain and (-, - ) is the inner product on &. We shall assume
throughout this section that A and B are two densely defined closed linear operators on
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& whose numerical ranges are contained in the wedge

ZE{Z € C||arg(z — w)| §§+5},

where w and 8 are positive constants. We note that the adjoints A* and B* are densely
defined closed linear operators. For each closed subspace & — &, m¢ will denote the
orthogonal projection onto &. If it happens that € < & (A) then, by the closed graph
theorem, Amg is a bounded linear operator on . Similarly if & is a closed subspace
contained in & (B*) then 74B, the closure of the operator 7zB, is equal to (B*7%)*, and
is a bounded linear operator on &. On the subspace ¥ < £(%) of compact linear
operators, we define the linear operator

A: Do H->H

with domain
Do ={S = mxSm4| %, ZF finite dimensional subspaces of

Z with €< D(A), F < D(B*)},
by
A(S)=AS +SB.

LEMMA 1. The closure of Do in L(¥). is I, and A is closable.

Proof. Suppose & is a finite dimensional subspace with orthonormal basis
{e1, es, " -+, e,}. For 1 =i = n suppose we have sequences {e¥}¥-1 converging to e;. Let
. be the orthogonal projection onto the subspace spanned by {e kel ..., e,’i}. Then
mk = g in the uniform topology. Let £ >0 and L be an arbitrary member of 5. There
exist two projection operators 7r; and m,, with finite dimensional range, such that
L — 1Ll <e/3. Since D(A) and @(B*) are dense in £ we can find finite dimen-
sional subspaces &< P(A) and F < D(B¥) such that |7 — 7+ |7 — el < e/3|L|.
Hence we have ||L — mgLwg| < e. Next we show that A is closable. Suppose {L,}is a
sequence in Py with lim, .« ||L,]|=0 and A(L,) tending to T € %. It suffices to show
T =0. To this end let x be an arbitrary element in 9(B), then lim,_ L,Bx =
lim, . L.Bx = 0. Since A(L,)= AL, +L,B we see that lim,_o AL.x = Tx. However
since the sequence {L,x} tends to zero and A is a closed operator we see that Tx =0 for
an arbitrary x € 2(B) and therefore T =0.

We shall henceforth use the symbol A to denote the closure of the previously
defined operator A. The domain of the closure will be denoted by &:

A=A:PcH->¥% DX

Remark. When K € 9 but K¢ 9P, then it is probably not true in general that
A(K)=AK +KB. We can however show that A(K)=AK +KB. Let {K,} be a
sequence in g such that K, > K € @ and AK,, + KB > A(K) in L(%)..If x € D(B), the
domain of B, then AK,(x) converges to A(K)x —KBx while K,x converges to Kx.
Therefore, since A is a closed operator, Kx € #(A) and, AKx = A(K)x — KBx. Hence
A(K)x =AKx+KBx for all x in the dense subset 9 (B) of &, and consequently
A(K)= AK + KB. In what follows we shall, for the sake of simplicity of notation, omit
the overlining, thus leaving the proper interpretation to the reader.

We use I to denote the identity operator on & and I to denote the identity operator
on (%) or #. The next lemma shows that 2wI— A is an accretive operator on J.
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LeEMMA 2. For any S € 9 we have
() S -A Az (1-220)|S], YA €[0, 1/2w),

. 1+]A
(i) [{AT-[A—=Qw + DIS)|= —CL-|||S I, for some constant C >0 and all complex

A with Re A 0.

Proof. Let S = UP be the polar decomposition of § where S € @, P = (5*S)"?,
and U is a partial isometry. We recall that U*U is the orthogonal projection on the
closure of the range of P. Since S is compact so is P and therefore there exists a vector x
such that ||x||= 1 and Px = px where p =||P||. We therefore have Sx = pUx and ||S||= p.
Also, since x lies in the range of P, it must be true that U* Ux = x. We now have

IS —AAS —ASB|| = |(Sx —AASx — ASBx, Ux)|
= [(UPx, Ux)—A{AUPx, Ux)— A {x, B¥*PU*Ux)|
= U*Ux, x)—A{AUx, Ux)—A(x, B*x)|p
=(1-2w)|S].

A similar calculation can be carried out for ||(A +2w + 1)S — A(S)|| with Re A = 0. This
quantity is then seen to exceed

5 (A +2w +1)=(AUx, Ux)—(Bx, x)| |S|.
Let

X, = {Z eC| |arg(z —2w)|~2—§+6},

then ¥ +Y =Y, and we deduce from (5) that
(A +20 +1)S — A(S)|| = |IS|| x dist(A, ¥, — 2w — 1).
A straightforward calculation shows that, letting 8 = min(s, 7/4),
dist(A, ¥, =20 —1)=(1+|A|)sin &

when Re A = 0. Letting C = 1/sin 5 we are done.

DEFINITION. A, =A—(A +2w +1)L

In order to prove the main result of this section we use some basic analytic
semigroup theory (see e.g., [4], [5], or [17]) and the following well-known theorem ([4,
p. 626]).

HiLLE-YosiDA THEOREM. Let C be a densely defined closed linear operator on a
Banach space. A necessary and sufficient condition for C to be the infinitessimal generator
of a strongly continuous semigroup of contraction operators is that |(AI — C ) < 1/A for
allA>0.

This theorem can be stated differently by replacing the condition by: [|(AI — C) 7' <
1/Re A for all A with Re A > 0. This follows directly from the fact that C generates a
strongly continuous semigroup of contraction operators if and only if C + iul generates
such a semigroup for any real u.

LEMMA 3. Whenever Re A =0, A" exists as a bounded linear transformation on
the space % of compact linear operators. Moreover |A; ' = C(1+|A|)" for some constant
C>0.

Proof. Consider the map K » AK ~wK with domain %,. By Lemma 1 we can
form the closure of this operator in 9. We denote this closed linear operator by A 4. Its
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domain is dense in . Since A — (w +A)I is invertible on & for each A >0, we see that
AI—A 4 is invertible on 9 and

AI=AL)'L)=[A+o)[-AT'L, A>0.
Using the inequality
[{A + )T — Alx, x)| = A{x, x), A>0

we see that
IAT=AL)=I[A +w)[-AT |=1/A

for all A >0. Applying the Hille-Yosida theorem we conclude that A, generates a
strongly continuous (with respect to the uniform topology on J) semigroup of contrac-
tions. We denote this semigroup by  4(s). Of course A —wl generates such a
semigroup on . We denote it by T4(s). Consider ¢ (s)=[T a(s)(K)]x — T a(s)(Kx).
Clearly ¢(0)=0 and

dy/ds ={Aa° T a(s)(K)}x — (A —wl)(Tals)x)
=(A—-wDyY(s), s>0.

Since this initial value problem has a unique solution, namely J4(s)¥(0), we see that
¢ =0 and consequently J 4(s)(K) =T a(s)K. Next let us consider map Ap: K -
KB — wB from 9 into ¥. Let 7 g(s) denote the semigroup on J¢ generated by Ap and
Ip(s) the semigroup on & generated by B-wl Let ¢(s)=
[T B(s)K)]*x — Ta(s)*K*x. Although the map L - L* from £(%); into itself is not
continuous, it is continuous as a map from £(%),, into itself. In fact d[F 5(s)(K)]*/ds =
[Ap > T 5(s)(K)]*. By a theorem of Phillips (see e.g., [6], [7]) the adjoint of a strongly
continuous semigroup on a Hilbert space is another strongly continuous semigroup
generated by the adjoint of the infinitessimal generator. This means that
dIs(s)*K*x/ds = (B* — wl)Ts(s)*K *x. We therefore have

de/ds =[Ap o T p(s)(K)*x — (B*—~wl)T5(s)*K*x
=[T s(s)(K)B —wl)]*x —(B* - wl)T(s)*K*x
=(B*—wl)$(s), s>0.

Since ¢(0) =0 we have ¢ =0, hence ¢* =0, or more explicitly F 5(s)(K)=KTp(s).
Next we define

g.=g.A°g.B.
We note that

T a(s)o T p(s)K)=Ta(s)KT(s)=T p(s)° T als)(K).

This means that Z (s) is a semigroup of contraction operators on %. We show it is
strongly continuous. The fact that 7 4 is a strongly continuous semigroup means that
|7 4(s)(K)—K|| tends to zero as s decreases to zero. This says that |74 (s)K — K| tends
to zero as s decreases to zero. Similarly we find that ||[KJ5(s) — K|| tends to zero as s
decreases to zero. Suppose that 7 (s) is not strongly continuous, then there must exist a
sequence of positive numbers {s;};=; with lim,.« s; = 0, and sequences of unit vectors
{x;};=1 and {y;};=1 and an & >0 such that

(Tals:))KTs(si)— K)x;, yi) > 3e, Vi,
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or writing this differently,
(Tals) — DK (Tp(s) —I)xi, yi)
(6) (T als) —Kx;, yi)
HK(Tp(s:)—1I)x;, yi)>3e, Vi.

We may assume without loss of generality that the sequences of unit vectors converge
weakly in &: x;—x and y;—y. Therefore Kx; > Kx (strongly) and hence (T a(s;)—
I)Kx; - 0, so that the middle term in (6) tends to zero. Also K*y; > K*y and (T (s;)* —
I)K*y; » 0, which implies that the last term in (6) tends to zero. We may assume, taking
a subsequence if necessary, that K (Jg(s;) — I)x; converges strongly to some element in
%, so that ((Ta(s;)—1)K(Tg(s:;)—1I)x; yi)—> 0, leading to a contradiction. We have
shown that 7 (s) is a strongly continuous semigroup of contractions on 5. It must have a
densely defined infinitessimal generator. But since we know that the derivative of
T (s)(K) in ZL(Z). is equal to (A—2wI)(K) for any K €9, it follows that this
infinitessimal generator must be A —2wl. Applying Hille-Yosida theorem once again,
but now in the other direction, we find that A —2wI— Al is surjective for any A with
Re A >0. Also [[(A— Q2w +A)I) 7 Y|<1/Re A or [Ay'|<(ReA+1)"". By Lemma 2 we
get the inequality [|A}'|= CA+|A]) 7"

4. Existence theorems. We shall first investigate the existence of uniform solu-
tions to the generalized Riccati equation

U=AtUO))UM+U@®BG U@)+F(t, U(1)),
U(O) =Sy Jt.

)

We assume %: % - ¥ and .

(I) For each t€[0, ty) and U € X with |U||=r, the linear operators A(t, U) and
B(t, U) are closed linear operators which have their numerical ranges contained in ..
By Lemma 1 we therefore have a corresponding closed linear map A(#, U) on a domain
9(t, U) which is dense in . Letting A, (s, U)=A(t, U)— (A +2w + 1)I we have by
Lemma 3 that A, (s, U) " exists as bounded linear transformation on % provided
Re A =0. Moreover we have

8 AL, ) I=C@+]AD7"

The dependence of A(¢, U) and # (¢, U) on t and U will be required to conform to the
following conditions:
(I1) Forsomer> 0 there existconstants C(r) and o >0 so that forall 0=t, 7 =ty and
all K1, K, e K with |Ki||=r, |Kol|=r:
() 17 (1, K1) = F (7, K| = C(r){|t — 7|7 + || K1 — KoJ},
(ii) The intersection of the domains of Ao(t, K1) and Ao(7, K3) is dense in I and
I[AG(z, K1) — Ao(T, K2)]Ao(T, K2)~1|| = C(r){lt =77 +IK1 — Kal},
(iii) [[A(s K1)~ A(r, K2)JLA(0, 0)— (0 +5)I]7'|
+|[B(0, 0) = (w +2)I1'[B(t, K1) — B(r, K)l| = C(n)[|t — 7| + | K1 — Ko}
We note that (ii) and (iii) are satisfied if A(z, U)=A(0,0)+a(s, U) and B(t, U) =
B(0,0)+8(t, U) where « and 8 are members of C([0, to) X ¥, #) and are locally
Lipschitz, with respect to the uniform topology on J¢. Moreover it can be shown that (ii)
and (iii) are still satisfied if we replace the arguments (7, K3) in Ao(7, K3) ' by (s, K) for
any s €[0, t,] and K € % with ||K|| <r ([5], [12)).
Letting S = U exp —(2w + 1), (7) becomes

9) ds/dt= A1, S)(S)+# (1, S),
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where F(t,s)= [exp— Qe +1)t]# (¢, [exp Qw + 1)£]S) and Aot S)=
Ao(t, [exp Qw +1)t]S) are operators which also satisfy (I) and (II). We assume a
somewhat more restrictive initial condition than was stated above, namely

(10) S0)=U(0)=S,e2=2(0,0)<X.

LEMMA 4. If (I) and (I1) are satisfied we also have:

(IIT) Foreachtel0, to) and K € X with |[K||=re ?“*V% Ay(t, K) is a closed linear
operator in ¥ with a domain & which is dense in 3¢ and independent of t and K. Moreover,
l(Ao(t, K) =AD"= CA+|A)"" for all A with Re A =0.

Proof. For each fixed ¢t and K, A, satisfies the hypotheses of the previous section
which implies that it is a closed linear operator which satisfies the inequality in the
statement of this lemma. To show that the domain is independent of ¢ and K we merely
note that by (II-ii) Ao(t, K)Ao(1, K>) 'isa densely defined bounded linear operator.
I~Jsing this and the fact that A(t, K1) and Ao(r, K>) are closed, one easily verifies that
Ao(r, K;) = Ao(t, K1). The reverse inclusion follows similarly. We now apply a result
due to Sobolevskii (see [12, § 5] or [5, p. 170]) which states that (9)—(10) has a unique
local solution provided (II-i), (II-ii) and (III) hold and ||So|| < r e ~?“*V%_ If (II) and (III)
are satisfied for arbitrarily large r >0 we can obtain the existence of a global solution.
These results are contained in the following theorem.

THEOREM 5. Suppose (1) and (I1) are satisfied for some r > 0. Then (7) has a unique
solution U € C*([0, t1), K) for some t, >0, provided So€ D with ||Sol| < re V% If (I)
and (I1) are satisfied for all r >0, then for each So € D there exists a t*, 0 <t* = to, such
that (7) has a unique solution U € C*([0, t*), %) with t* = t, = 0 or lim sup,+ y(¢) = 0,
where

y(&)=[Ao(t, U@))U () + U()Bo(t, U®)),

i.e., [0, t*) is the maximal right open interval on which one has a uniform solution of class
C'. (See [3] where stronger regularity is obtained for a similar problem with A(t, U) =
B(t, U)* = A, independent of t and U).

Proof. The local existence follows from the remarks above. Let [0, t*) be the
largest right open interval on which one has a unique C !_solution. If t* <t, and y(t)
remains uniformly bounded as ¢ increases to * then the proof of Sobolevskii’s result
shows that the solution can be extended to [0, t*] (see Thm. 16.5, p. 175 of [5]).
However, by the local existence result, one can extend the solution to a somewhat larger
interval [0, t**) with ¢* < ** < t,, contradicting maximality.

Next consider the Riccati equation

dS/dt = A(t)(S)+SC(t)S +D(1),
S(0)=Soc L(Z).
We assume C and D are Holder continuous:
(IV) Ce (0, ty), (%)),
DeC([0, tp), ) forsome 0<o<1.
Let Ao(t) = A(t)—(w+1/2)[, Bo(t)=B(t)— (w +1/2)IL.
dS/dt = Ao(t)S +SBo(t) +SC(t)S + D(¢).

By the above theorem (11) has a uniform solution T'(¢) on [0, t*) corresponding to an

(11
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initial condition T(0)=0. Let R=S —T, then
dR/dt =[A¢(t)+ T(t)C(t)]R + R[Bo(t)+ C(£)T ()]
+RC()R,
which we write as
dR/dt=A(t)R +RB;(t)+ RC(#)R.

We may assume without loss of generality that A(¢) and B;(¢) have numerical range in
¥ —w —3 and hence we can find propagation operators for the infinitessimal generators
A and B¥ on & ([5], [12]) which are strongly differentiable in the region ¢ =s:

%U(t, $)x = A(OU (5 9)x,

aft-V(t, $)x =BV (1, 5)x

and V(s,s)=U(s, s)=1
LEMMA 6. (3/31),V (¢, s)*x = V (¢, s)*B(t)x for every x € &, and t >s.
Proof. When t=s and t+h =s we have

t+h
V(t+h,s)-V(ts)= J BY (r)V(r,s)dr

t+h

=Bt -B0MBL ) BNV, )] dr
t+h
+[ BB IBI OV, ) dr
t+h

=B [ Vir,5)dr+O(RI™),

where we have used the following facts:

() |[B¥ (r) = B*(£)1B*(7) "] = const. x |t — 7| (see II),
(ii) B¥(+)B¥ ()" is uniformly bounded (see (i)),
(iii) BT (¢) is a closed operator and hence commutes with integration.

We note that the integrals converge in £(%), while O(|h|'*”) refers to the magnitude of
the norm. We obtain for each x € 2 (B(t))

ES

1 1 t+h
Z[V*(t+ h,s)—V*(, s)lx = E[L V(r, s) dq-] B;(t)x + O(|h|?).

Since, for s=7=t¢, |V(t,s)— V(7 s)|=sup,=o=: |BT (o) V (0, s)||(t—7) = const. X (t—
7)(r—s)"" [5, p. 127], we see that the operators on the left hand side are uniformly
bounded for sufficiently small /. Taking the limit as 4 - 0 we obtain the desired result on
D(B;1(1)) = D(B1(0)). Since V (¢, s)*B.(t) =[BF V(t, 5)]*, a bounded linear operator, we
obtain the desired result on all of & after taking the closure.
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Next we define

P@t)= J‘t V(r, 0)*C(v)U(7, 0) dr,

RW=Y UG, 0SLPN)SIV(, 0)F,
=0

ji=

where [P()S,]° is defined to be I for all # = 0. We will show that R solves (12) on some
interval [0, t;). First we note that the series converges uniformly (in ¢) in £(&%),, for small
t. This means R is strongly continuous and R (0) = S,. If we formally differentiate we
obtain

dR/dt= Y AUt 0)So[P(H)SeTV (1, 0)*

i=0

3 UG 0SLPOS:TV(E 0/B:(0)

+§ i U(t, 0)So[P(£)So) 'V (1, 0)*

j=0i=1
- C(U(t,0)So[P(1)So] ™' V (1, 0)*
=A,R+RB;+RCR.

We now make this calculation rigorous. First, since A; and B, are closed operators we
can indeed interchange them with the summations, as we have done above, when
evaluating A;R and RB; (in the strong topology). For ¢ > 0 the differentiation can be
carried out term-wise because the series for R and the formal series for dR/dt both
converge uniformly (in ¢) in £(%Z),. To justify the product rule for differentiating
individual terms we prove the following little lemma.

LEMMA 7. Let @ and B be strongly differentiable maps from [0, t,) into L(X)s and
suppose they are continuous with respect to the uniform topology. Then, for each x €  we
have

4 poyde, . dB
o (aBx)= i Bx +a dtx

Proof.
h ' a(t+h)B(t+h)—a()B())x
=h[a(t+h)—a(®]BOx+aOr[BE+h)~B(1)]x
+a(t+h)~a(®Hh T [B(t+h)=B(1)]-B'(D}x +[a(t+h)~a ()] (Dx.
As h tends to zero the first two terms tend to
(da/dt)Bx +a(dB/dt)x

while the last term tends to zero. The third term tends to zero because || (?)| is locally
bounded. It should be remarked that this is still true even if we remove the continuity
hypothesis since strong continuity implies local boundedness of the norm (see proof of
Theorem 8).

Since U(t, 0) and V (¢, 0) satisfy the hypothesis of this lemma the above differen-
tiations are indeed justified. We therefore have the following.
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THEOREM 8. Suppose hypotheses (1), (I1), and (IV) are satisfied. Then, for some
0 < t* = t, there exists a unique strongly differentiable solution of (1) on the interval [0, t*).
Moreover the solution is in C([0, t¥), L(%).).

Proof. Let S =R + T where T is the uniform solution of (1) corresponding to a
zero initial condition and R is given by (13). In order to prove uniqueness we must first
show that any strongly differentiable solution S for (1) must be uniformly bounded on
compact sets in [0, t*). Let 0< T < t*, then (S(¢)x, y) is obviously bounded on [0, T].
Applying the uniform boundedness theorem to the collection of linear operators on
Z ® ¥ indexed by t€[0, T] and defined by x ® y > (S(¢)x, y), we see that ||S(¢)|| is
uniformly bounded on [0, T']. Let S; and S, be two solutions for (1). Subtracting the

two equations for S; and S, from each other we obtain the following equations for
W= Sl — Sz!

dW/dt=(A—-S,C)W+ W(B-S,C),
w(0)=0.

Let z be an arbitrary element of & and let us solve

du/dt=—(B—S:C)u(t), 0<t<T,
u(T)=z.

Sobolevskii’s results tell us that we do indeed have a solution. Let g (¢) = W (¢)u(t); then,
since u is differentiable, W is strongly differentiable and || W (¢)|| uniformly bounded, it
follows that q is differentiable and

dq/dt=(A—-S,C)q(t), 0<t<T

with q(0) = 0. This means that g = 0 or, more specifically, that g(T) = W(T)z = 0. Since
T and z were arbitrary this means W =0 on [0, t*). Since R is a series whose terms are
in C([0, t*), £(Z).), and which converges uniformly on compact subintervals of [0, t*),
it follows that R, and hence S, must also belong to that class.

Returning to the context of the transport problem discussed earlier, we remark that
the decomposition S = R + T which occurs in the proof of the above theorem does not
in general coincide with the specular diffuse decomposition. However, Theorem 8 does
tell us that the equation for the specular part has a strong solution. Also, the equation
for the diffuse part is of the type treated by Theorem 5 and therefore the diffuse partis a
uniform solution.

In conclusion we mention that strong solutions are also solutions in the sense
defined by Tartar. Therefore the qualitative results in [14] are applicable here.
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TURANIANS AND WRONSKIANS
FOR THE ZEROS OF BESSEL FUNCTIONS*

LEE LORCHfY

Abstract. Paul Turan [On the zeros of the polynomials of Legendre, Casopis pro P&stovani Mat. a Fys.,
75 (1950), pp. 113-122] proved that the Legendre polynomials satisfy the inequality P,(x)P,.2(x)—
[Pn+1(x)P? <0, —1<x <1. Here it is shown that the positive zeros of arbitrary real Bessel functions satisfy
similar inequalities, even in a more general form. An analogous result is established for the corresponding
Wronskian. In § 8, Remark 3, the monotonicity results established in the course of the proofs here are used to
complement those derived by Sturm methods in [LEE LORCH, Elementary comparison techniques for certain
classes of Sturm—Liouville equations, Proc. Uppsala 1977 Inter. Conf. Diff. Equations, Symposia Univ.
Upsaliensis Annum Quingentesimum Celebrantis 7, Acta Univ. Upsaliensis, Uppsala 1977, pp. 125-133].

1. Background. Paul Turan established [9], for the Legendre polynomials P, (x),
the determinantal inequality

(1) Pn(x) Pn+1(x)

Poi1(x) Ppia(x)
n=0,1,2,---.G.Szegd [6; cf. also 7, p. 388, Problem 70] later supplied four different
proofs. S. Karlin and G. Szego [3] studied the oscillatory properties of such deter-
minants (which they named Turénians) of second and higher order and Wronskians. An
extensive literature, not enumerated here, has arisen from the search for Turan-type
inequalities for other orthogonal polynomials.

In addition, O. Széasz [5] established an analogue for Bessel functions of the first
kind, namely

2

<0, -1<x<1,

L (x)  Jolx)

Jos1(x)  Joia(x)

The corresponding result (in which the sign is reversed) for the modified Bessel

function K, (x) has been established independently by M. E. H. Ismail and M. E.
Muldoon [2] and by H. van Haeringen [10].

Here there will be established corresponding results for the positive zeros of the
general Bessel function €, (x) = AJ,(x)+BY,(x), where the real numbers A, B are
independent of both x and ». The precise statements are in § 2. In § 3 the appropriate
Wronskian is defined and the corresponding inequality stated. §§ 4, 5, 6, 7 are devoted
to the proofs.

Finally, § 8 incorporates various remarks, including some which relate results
established here (which are basically on the monotonicity of ratios of Bessel function
zeros) with those found in [4].

<0, v>-—1,—00<x <00,

2. Turanians for the zeros of Bessel functions. Replacing the Bessel functions in

(2) by the positive zeros ¢, of the general Bessel function 4, (x) suggests two analogues
of (2), namely

Cuk Cuk+1
(3) Ty=| " ) <0,
Cok+1  Cuk+2
and
Cuk Cul,k
(4) T2 = v, v+ < 0’
Cv+1,k  Cvi2,k

* Received by the editors December 5, 1978. This work was supported in part by the National Research
Council of Canada.

T Department of Mathematics, York University, Downsview, Ontario, Canada M3J 1P3.
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where » =0. The restriction » =0 is purely formal. It can be omitted, provided one
adopts the convention suggested by [11, pp. 508-9] so that ¢, remains an analytic
function of ». When ¢, x =j,.x [y..x]), the kth positive zero of J,(x) [Y,(x)], then the
results are valid for » > —1 (respectively, v > —3).

Both (3) and (4) are valid. Indeed, they are special cases of the inequality (proved in
§86,7)

(5) T= Cuk Cy+8,k+h <0,

cv+e,k+r cv+8+e,k+h+r

forv=0;=0,6=0;h,r=0,1,2,-- -, e+r>0,h+6>0.

The inequality (3) is the special case e =6 =0, h=r=1, (4), the special case
e =6 =1, h =r=0. Together, (3) and (4) are analogues of the duality between x and n
mentioned in [3, p. 4], with ¥ now in the role of n.

3. The Wronskian for the zeros of Bessel functions. Here the notation is arranged
so that vy, x <c, m, Where vy, « is the kth positive zero of a Bessel function of order », ¢, ,,,
the mth positive zero of a Bessel function of the same order v, not necessarily linearly
independent of the first. The derivative with respect to » of v, is written as y %, of ¢y, m,
as c(,,lzn In this notation, the Wronskian is defined to be

(6) Wi com) = | 75 S
vk Cum
It will be shown that
(M Wi cm) <0, v =0,
so that, in particular, still for » =0,
(8) W(coks Crierm) <0, k,m=1,2,---

4. Preliminary remark to the proofs of (5) and (7). Common to these proofs is the
formula given by G. N. Watson [11, (3), p. 508]

) % =2c I Ko(2¢ sinh £) exp (—2u¢) dt,
v 0

where c is any positive zero of €, (x) of fixed rank and Ko(x) is the customary modified
Bessel function of order zero.

5. Proof of (7). The result for the Wronskian is now immediate, since (9) implies
that

0

%W(YV,k7 Cv,m) = ’YV,kCV,m j [KO(zcv,m Sinh t) —KO(Z'YV.I( Sinh t)] exP(_ZVt) dta

0
and this is negative because Ko(x) decreases as x increases.

6. Proof of (5). Preliminaries.
LEMMA 1. For v =0 and fixed,

(10) C—Zf—mll as k increases, m=1,2, - - -
v,k

Proof. That the ratio decreases follows readily from [4, (4.5), p. 130]. To see that
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the limit is one, we note, e.g. [11, p. 517]

Cuk+1 1= Cop+1—Cuie_m+0(1)

O< "0(1)’ k_)w’

Cyk Cyk Cuk

and the proof is complete.
LEMMA 2. If Cyirom > Vo> k, 1, m fixed, then

cl/ rm
(11) —E 11, asv->.
Yv,k
Proof. Denoting differentiation with respect to v by D,, we have

Co+r,m Dvcv rm Dv v,
D,,{log + }= tom _ r¥uk
Yv,k

Cv+r,m Y,k
=2 I [Ko(2¢y+r.m sinh £) — Ko(2,,, sinh ¢)] exp(—2wvt) dt,
o

and this is negative since Ko(x) decreases as x increases.

Thus, the ratio in (11) decreases as v increases. That the limit is one follows from
the known asymptotics of the zeros of Bessel functions [8], [11, p. 521].

The special cases useful here are

(12) c_:,_,,;_,_,,“ as ¥ 100, for Cpirm > Cois
in particular,
(13) %u as 10, h k=1,2, .
Moreover, if v, § (Z0)and r=0,1,2, - - -, are fixed, r+8 >0, then
(14) Cexdkir |1 as koo,
Cuk

To prove (14) it suffices to show that

Cok+1_ Co+s,k+r+1
> .
cv,k 4 v+8,k+r

But, from (12),

Cok+1 _ Co+s,k+1

v

’

Cuk cv+6,k

with strict inequality if § >0, and from Lemma 1 (10),

Cy+8,k+1 - Co+8,k+r+1

b
Cu+8,k Coy+8,k+r

with strict inequality if » > 0.

7. Proof of (5). Conclusion. The assertion of (5) can be written equivalently as

CV+6+e,k+h+r< Cy+8,k+h

4 v+e,k+r 4 v,k
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The left member, by (12), is less than

Coy+8,k+h+r

cv,k+r

unless ¢ = 0, in which case equality occurs,and this in turn, from (14), is less than

Cy+8,k+h

cv,k

unless r = 0, in which case there is equality. But € +r >0, so that strict inequality must
occur at least once.

8. Remarks.
1. Inequality (3) can be written

cv,k Acu,k
2
Ac,,,k A Cuk

In this form, it is clear that the assertion is trivial when v =3, for then Azc,,,,c =0,as
Sturm pointed out in 1836 [11, p. 517]. However, for 0 = » <3, Sturm’s method shows
that A%c, . >0 and the inequality (3) acquires more substance.

2. The inequality (5) may be contrasted with the discussion of the function ¢(x)
defined in [3, (33.2), p. 154]. One possible comparison arises on putting 4 =r=0in T.
The inequality

T1= <O

cv,k cv+8,k

T3=

<0, 6>0, £€>0, k=1,2,---,
cv+e,k Co+d+e,k
results. It is valid for all k, here corresponding to x in ¢(x), as well as for all » =0, which
here corresponds to n. Another (dual) analogue is obtained by taking e =8 = 0in (5), so
that

Cuk Cuk+h

Ty= <0, hok,r=1,2,---.

Cok+r Cok+h+r

Here v corresponds to x in ¢(x), k to n.

As is pointed out in [3, p. 155], the inequality ¢ (x) <0 need not be valid always.
They cite, i.a., a counterexample due to A. E. Danese [1].

3. In (13), the case h =1 justifies the comments found in [4, p. 130] in the
paragraph following (4.7). It shows, in particular, that inequalities (4.6) and (4.7) of [4]
cannot be improved by making the ranks of the zeros the same throughout those
inequalities. Combining (13) with (4.6) and (4.7) gives, respectively, for k =2,3, - -,

cv+e,k+1 cu,k+l cv+e,k

< < R 0<e=1, v=0,
Cv+e,k cv,k cv+e,k—1
and
vre k1l _ Jvk+1 ek
]'f” <]'f < ,]" =2 0<e=2, r=0,
]u+e,k ]v,k ]v+s,k—1

where both right hand inequalities remain valid even if ¢ = 0, but become false as ¢ - 00.
For example, the foregoing right hand inequality is false for ¢ = 3 when, say, k=2, » =0
and when k=39, v =2.

4. In[4]all proofs are based on Sturm comparison methods, unlike here. It may be
of interest to note that an alternative proof of the Turan-type inequality (3) is contained
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in [4, (4.6), p. 130] on taking ¢ = 0.
5. The inequalities here and in [4] can be used to check tables of zeros of Bessel
functions.

Acknowledgment. I am indebted to Professor M. E. Muldoon for Reference [10],
and to Professor W. A. Al-Salam for remarks (i) and (ii):

(i) (2) is implicit in a formula published by E. C. J. von Lommel in 1879 [cf. 11,
p. 135 (11)];

(ii) The analogue for Hermite polynomials H, (x), —00 < x <0, of (1) and (2) is an
obvious consequence of a formula observed by Hiiseyin Demir in 1946 (Problem 4215,
Amer. Math. Monthly, 53 (1946), p. 470; Solutions, Ibid., 55 (1948), pp. 34-35, by
several authors).

It appears, however, that explicit statements of such inequalities as (1) were not
made before P. Turan [9].
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ON A CLASS WI[k,s; C;;] OF POLYNOMIAL SETS: PART I*
I. M. SHEFFERT

Abstract. A class W[k, s; C;]of polynomial sets is introduced which generalizes type zero sets and sets of
class S*. These latter sets have been studied in some detail, and have been shown to have interesting

properties; and the new class should be of similar interest. Sets in W[k, s; C;;] are characterized in terms of
their generating functions.

Introduction. A polynomial set [hereafter p.s.] is an infinite sequence {P, (x)} with
degree P,(x)=n (n=0,1, - ). Aclass of p.s. of type zero was defined and studied in
[3]. Gian-Carlo Rota [2] has shown that type zero sets (termed Sheffer polynomials) are
important in finite operator calculus. Al-Salam and Verma [1] generalized type zero
sets to the class S¥, defined by

(0.1) JP.(0)]= ¥ 6P (x)=Pa-i(x) (b #0);
j=k
and they obtained the generating function G(x, t) that characterizes sets in $*:

0.2) Glx, =3 A,(0) exp xH ("},
where H(t) = Z;o hjti (hy #0) is the formal inverse of J*(¢):
(0.3) HJT*()=T*H() =1,

J*(t)isa kthroot of J(¢) = Z;’ik bit’, and w = exp {2i/ k}. Further properties of S * sets,
including a characterization of those S k sets that are orthogonal, are given in [4]; and
other properties in [5].

In the present work we consider the class of p.s. W[k, s; C;;] defined by a system of
s equations

(0'4) J[Psn+j(x)]= Z Cj,mPsn—k-H'—m(x) (] =0’ 1a T, 8— 1; n =0, 1a 2’ t ')
m=0
with constant {c; .}, where J is the differential operator
(0.5) Jyl=Y by (x) ({b;} constants; b, # 0).
j=k

We propose to characterize p.s. solutions of (0.4) by means of their generating
functions. Throughout the work we use formal power series; and w, { will always stand
for

(0.6) o =exp {2mi/k}, ¢ =exp {2mi/s}.
1. Preliminary results. One readily proves

LEMMA 1.1. System (0.4) has a p.s. solution {P,(x)} iff

s—1
(11) H c,;o;ﬁ().
i=0

* Received by the editors November 22, 1978.
t Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
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And when (1.1) holds, there is a unique p.s. solution for which (i) Pj(x) (j=0,---,k—1)
are preassigned (with P; of degree j), and (i) {p.,;} (j=0,---,k—1;n=k) are pre-
assigned. (Here P,(x) = Z,';o DX’

Note that if degree P;(x) <j for at least one j < k, then {P,,(x)} will be a solution of
(0.4) but not a p.s. solution.

Let {P,(x)} be any p.s., with generating function

(12) = P =5 (£ puclfr

n=0 \j=0

Writing this as a formal series in x we have

13) Gx,0= T 803" @)= X piat’  (pun#0).

It is seen from Lemma 1.1 that we have

LEMMA 1.2. Let (1.1) hold. There is a unique p.s. satisfying (0.4) for which {g;(¢)}
(j=0,- -, k—1) are preassigned. And all p.s. solutions are obtained in this way.

Let {P,} be any p.s., with generating function [hereafter g.f.] (1.2). Let

(1.4) Gi(x,t)= Y Puri(x)t™"  (i=0,1,---,5—1).
n=0

We call G; the i-th component (mod s) of G. (In general, a formal series ZZO:O Apssit™ s
an i-th component (mod s).)
Let (1.2) define a p.s. solution of (0.4) and let {G,} be the components (mod s) of G.

Multiply the equations of (0.4) byt (j =0, - - -, s — 1) respectively and sum on n. We
obtain the system

(1'5) J[G]'(X, t)]= tk ° sil thq,h(t)Gs—r+i—h(x, t) (j =0a la ttty, s_l)a
h=0

where k=r (mod s), 0=r<s and
(1'6) Ci,]'(t) = Z ci,i+nstns (i,j=0, et S_l),
n=0

and indices on the G’s are to be reduced (mod s) to the range [0, s —1]. E.g., if r = 2 then
G,_,+s-1= G,_3 if s =23. Note that each C;(¢) is a O-~component (mod s).

Conversely, given (1.5), on equating coefficients of like powers of ¢ we return to
(0.4); so we have

LEMMA 1.3. Systems (0.4), (1.5) are equivalent.

We find it convenient to deal with (1.5).

Suppose s = 1. Then (0.4), (1.5) become

17) TP@]= £ bPLW= X cnPacien(®)  (BicoO),
(1.8) JGk, 0]=*C(H)G(x, ), CH)=7Y cf.
i=0

Let J*(¢), C*(¢) be arbitrary but fixed kth roots of J(¢) = Z,Zk bt', C(t). Now J* is a
series ZT jnt" (j1#0) so it has a formal inverse

(1.9) ()= e”  (ex#0): J*I(1)=IT*(2) =t.
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THEOREM 1.1. A p.s. {P.(x)} satisfies (1.7) iff its g.f. has the form

k—1
(1.10) Gx, )= Y A,(t) exp {xI(0"tC*(1))},
p=0
where {A, (1)} are arbitrary formal power series: A,(t) =Z:°,0 apnt" such that
k—1
(1.11) Y apo0™#0  (n=0,---,k—1).
p=0

Proof. If (1.10) is expanded in a series in x the coefficient of x"/n! is (efco)
(420 @pow™)t" +higher powers. So (1.10) will be the g.f. of a p.s. iff (1.11) holds for all
n, hence for all n €[0, k —1], since w* =1.

That (1.10) is a solution of (1.8) is seen by direct substitution, using
Y bl (@PtC*(2))Y =TI (w"tC*(1)) = [J*(I (w”t1C*(1)))]*
i=k

=[w’tC*)]* = t*C (1)

There remains to show that if {P,(x)} is a p.s. solution of (1.7) then its g.f. G(x; )
has the form (1.10). G is given by (1.2), (1.3). By Lemma 1.2 it suffices to show that
{A,(2)} can be chosen so that

112) nlg®)= 3 A,MHLD, (HyO=I@"CH D) (=0, -, k-1).
p=0

The coefficient determinant A(?) is a Vandermond determinant in {H,(¢)}. One readily
finds that

A(t) = D(eic¥t)*"P¥? + higher powers,

where D is a nonzero Vandermond determinantin 1, w, * -+, 07",
If we solve (1.12) for A,(¢) by Cramer’s rule, the numerator determinant is seen to

have a factor * %2 50 each A,(t) is a power series. Hence the g.f. for the given p.s.
solution has the form (1.10).

The defining equation (0.1) for sets in class § “isa particular case of (0.4), withs =1
and C(¢) =1 in (1.8). However, a p.s. can be in S* even if C(r) # 1:

THEOREM 1.2. Let the p.s. {P,(x)} satisfy (1.7). If C(t) is a 0-component (mod k)
then {P,(x)}e S*.

Proof. C*(¢) is a kth root of C(¢), so it also is a 0-component (mod k). Let
H(¢) =I(tC*(t)). Then H(w"t) = I(w"tC*(t)), so the g.f. G for {P,(x)}, which has the
form (1.10), can be written as (0.2). Hence {P,} e S*.

Remark. The converse of Theorem 1.2 is false for k> 1. It is easy to set up an
example.

2. General case. We now consider system (0.4). Let integers g, r satisfy
(2.1) k=qs+r 0=r<s).

Multiply the equations of (1.5) by functions (i.e., formal series) vo(2), - - -, vs-1(¢) and
add:

2.2) NG* & 0= T O] T "Cn1Gsresoms, 0},

2.3) G*x, =Y 0,(HG,(x 1).
i=0
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We wish to choose {v;} so that the right side of (2.2) is t*u (t)G* for a suitably chosen
u(?). This requires that we satisfy the system

s—1 X
(2.4) ‘ZO o[ Crpam = uO)O5—p-m (M =0, ,5-1),
i=

where the asterisk signifies that wherever j+m is outside the range [0, s—1] the
corresponding power of ¢ and second index on C are to be reduced (mod s) to that
range. E.g., if r+m=s+n (0=n<s) then [¢/*"C;;sm]*=1"Cj,.. Also the v-index
s —r—m is to be reduced (mod s).

After a suitable permutation of the equations of (2.4) the determinant of the
coefficients of {v;} is

[ts—rCO,s—r 'u] [tS-H-lCl,s—H-l] e [ts—'_lcs—l,s—r—l] *
(2-5) A(t) = [ts—r—lco,s-r—l] [ts—rcl,s—r— u] v [ts‘—r_zcs—l,s—r—i’.]

where the asterisk has the same meaning as in (2.4).
To have a nontrivial set {v;} we must have

(2.6) A()=0.

This equation, which we term the u-equation, is algebraic of degree s in u(¢). Its roots
play a central r6le in the theory of system (0.4).

Each root u(t) determines a solution {v;} of (2.4), leading to a G* of (2.3), and we
have

(2.7) J[G*]=t*u(t)G*.
Now (2.7) is of the form (1.8) with C(¢) = u(t), so from the case s = 1 we have

(2.8) G*(x, t) = kZ:’,l A, (2) exp {xI (w"tu*(2))},

where u*(¢) is a kth root of u().
Canceling (—1)°, (2.6) we can write as

(2.9) [u(®)F + D)+ - -+ D ()[u()]’=0.
LEMMA 2.1. Each D;(¢) in (2.9) is an r(s — i)-component (reduced (mod s)), so that
(2.10) D= "Dty (i=1,---,5).

Proof. Let the rows and columns of (2.5) be denoted as the Oth, 1st, - - -, (s —1)th.
Each nondiagonal element (and the part of diagonal elements not including the ) is of
the form ¢’ C;i(t). Now each C; is a 0-component (mod s); hence each power of ¢ in series
t'C;i(¢) is congruent to j (mod s). We may therefore ignore the C;’s.

Let n be given, 0= <s. A typical term in the expansion of A(¢) that has u(t) as a
factor exactly n times will have u(f) coming from n diagonal elements, say in the
positions (p1, P1), " * * » (Dn, Pn). The remaining factors will come from elements in
positions (g;, r;) i =1, - - -, s —n), where {g:}, {r;} independently fill out the complement
of p1, - - -, p, relative to the set 0,1, - -, s —1. The power of ¢ in the place (g ) is
s —r—q; +r; so the above-mentioned typical term has ¢ to a power congruent (mod s) to

s—n

(2.11) L s—r=q+n)=(s=r)s=n)=Lq+Lr.



232 I. M. SHEFFER

Now
s—n n s—1 s—n n
YrntXp=Y 1=Y q+2 p,
i=1 i=1 m=0 i=1 i=1

s0 Y. q; = r. Thus (2.11) has a value = rn (mod s); so every power of ¢ in the series for
D;_,(t) is=rn (mod s).

From Lemma 2.1 we derive a useful result:

THEOREM 2.1. If u(t) is any root of the u-equation then

(2.12) u(®), Lue), Eu(e), -, L)

are also roots (not necessarily different).

Proof. It suffices to show that v (¢) = ¢"u({t) is a root. In (2.9) replace ¢ by ¢t and use
(2.10). We obtain the u-equation with u replaced by v.

LEMMA 2.2. Every root of the u-equation is nonzero for t =0.

Proof. Suppose u(0) =0 for some root. Taking ¢ =0 in (2.5) we obtain 0= A(0) =
T1;25 cio where r =0, and 0 = A(0) = £C,6(0)C,+1,0(0) - - - Co—1,0(0) =T} cjo when r
0. This contradicts (1.1).

Corresponding to a root u(t) we obtained a solution (2.8) of (2.7). If we suppose
that the roots uy, - - + , u, are distinct there will correspond functions G¥, - - - , G¥ of the
form (2.8), and solutions {vy;}, - - -, {vy;} of (2.4). If we assume that det |v;;(¢)| # 0 we can
solve the system obtained from (2.3) for {G;(x, t)}, and thus obtain the g.f. for a solution
of (0.4).

It is thus suggested that solutions of (0.4) may be given by g.f.’s G(x, t) = Zf;(l, G,
where

s k-1
(2.13) Gi(x,)= Y Y Aipm(?)exp {xI(w’nu (1))}
m=1p=0
(i=0,---,s—1), where {u(¢)} are the roots of (2.6) and u} (¢) is a kth root of u,.(¢).
We shall see that this is so for the case considered in Part 1. For other cases, particularly
when the u-equation has multiple roots, (2.13) requires modification.

3. Case (s, k) =1. From (2.1) we have (s, r)=1.

LEMMA 3.1. Let (s, k) = 1; then the s roots of the u-equation are all different att =0,
hence they are distinct.

Proof. Let u(t) be a root. The s roots of (2.12) have the values ¢"u(0)-
(j=0,---,5s—1)at t=0. Now u(0) # 0 by Lemma 2.2, and {;r} is a complete residue
system (mod s), so no two of {¢"u(0)} are equal.

LEMMA 3.2. Let (s, k)=1. If uy,- - -, us are the roots of (2.6) taken in the order
(2.12) so that

(3.1) ur(®)=ut), ua(t)=¢"u(t), - - -, u(t) = {(S—l)ru({s—lt),
then
(3.2) aF@)=ula(® (=1, s;ufa =ul, uf =ub).

Here u¥ (t) is a k-th root of ui(t), and for i>1, u¥(t) is that k-th root of u;(t) given by
{(i—l)r/ku;k ({i_lt)(l)(i—l)q.
Proof. We have ¢ =w"’*, so

(3.3) (u;k((f)=((k_r)/kw—qu?k+1 () =ufa (0).
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We saw earlier that

(34) Gxn=Y ZA.pm(t)GXP{xI(w”tum(t))} (i=0,---,5s-1)

m=1p=0

might give a solution of (0.4) [or equally (1.5)]. To determine when it does, substitute
(3.4) into (1.5). The left side of (1.5) becomes

k—

Z Z Ajpm(t) exp {xI (0 tuy, (1))} - J(I(w"tuy,(2))).

m=1p=0

Now J**(£)=J (1), J*(I(t)) =1, so

J(I(wPtuk (1)) =[w’tul ()] = t*um(?).
Thus

JG(x 0]=1* ¥ Z Ajpm () () exp {xI ("t (1)}

m=1p=0
The right side of (1.5) becomes

k—1 s—1

£ Y Y Y 19Ca() Asmres—anm(t) exp (Il (0Pt (1)),

m=1p=0d=0

So (3.4) will give a solution of (0.4) (hence of (1.5)) iff the set {A;, ..(¢)} satisfies the
system

35 I T Man@en (Gl mAOI=0  (j=0,+,s-1),
where
(.6) Mipon()= Aipn®60)= T 1*CoaDAsrss-anm(0).

LemmMma 3.3. Let {r,(0)}, {Vom(@®)} (m=1,---,s; p=0,---,k—1) and I(t)=
Y3 eqt"(e1 #0) be formal power series, and suppose

©"7,(0) = 0”1, (0)  (0=p1,p2<k)
holds only when p1=p;, m;=m,. If

(3.7) ST Vom(t) exp e (@t (1)} = 0
m=1p=0

then

(3.8) Vom(£) =0 m=1,---,s;p=0,--+,k—1).

Proof. Expand (3.7) in powers of x and equate to zero the coefficient of x":

(3.9) S S VO @) =0 (1 =0,1,- ).

m=1 p—

Let

(3.10) Vo) = L Vpmnt"s,  01a(t)= ¥ dpmnt".
n=0 n=0
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Cancel ¢" from (3.9) and set ¢t =0:

k~1

(3.11) Y X Upmodpmo=0  (n=0,1,--").

m=1p=0

Take n=0,1, - - -, sk —1. This gives a homogeneous system of sk equations in the sk
quantities {v,, .0}, with a non-zero Vandermond determinant in the sk distinct numbers
{dp,m,}. Hence vp,mo=0 (all p, m).

We can now cancel a factor ¢ from each V,,, in (3.10), and on repeating the above
argument we get v,,,,; = 0; then v, .o = 0; and so on. So (3.8) holds.

Apply Lemma 3.3 to (3.5), with V,,,, =M, (j fixed), r,.(¢) = u}(t). Suppose
w”u}, (0)=w"ul,(0). Raising to the kth power: Uy, (0)= u,,(0). Since (s, k)=1,
Lemma 3.1 implies m; = m,; hence also p; = p>. Thus the hypotheses of Lemma 3.3
hold, so M;, () =0 (all j, m, p).

We conclude that if (3.4) is a solution of (1.5) then the functions {A, , ..(¢)} satisfy
system

s—1
(3.12) um(t)Ai,p,m(t)-—_ > t]Ci,j(t)As—r+i—j,p,m(t)
j=0
(m=1,--+,8;i=0,--+,5=1;p=0,---,k—1).

By convention the first index s —r + i —j is to be reduced (mod s) to the range [0, s —1].
Conversely, if {G;} is given by (3.4), and if (3.12) holds, we can work back to (3.5) and
hence to (1.5). To sum up so far; {G;} given by (3.4) is a solution of (1.5) iff (3.12) holds.

However, we have not yet imposed the condition that G; be an i-component
(mod s); i.e., that it satisfy

(3.13) Gi(x, {1)=¢'Gi(x, 1).

From (3.4) and (3.2) we get

(3.14) Gix, =3 ¥

m=1p=

' Aipm-1(£t) exp {xI (0®tu}(2))}.
0

Here A,',p,o(t) = A,‘,p,s (t)
Putting (3.14) into (3.13) we obtain equations like (3.7). Lemma 3.3 again applies,
to yield conditions

(3.15) Aipm-1({)=L'Aipm(t)  (m=1,--+,5;i=0,-+-,5—1;p=0,---,k—1).

Conversely, (3.4) and (3.15) imply (3.13); so if {G:} is given by (3.4) then (3.13) holds iff
we have (3.15).

Combining results we have

LeMMA 3.4. Let {G;} be given by (3.4), with (3.13) holding. Then G = Z,:(l) Giisa
solution of (1.5) iff {Aip.m(2)} satisfies (3.12) and (3.15).

If in system (3.12) (with p, m fixed) we transfer all terms to the right and arrange the
A’sintheorder Ao pm, A1,pms * * * s As—1,p,m the determinant of the coefficients is AT(t),
the transpose of A(¢) in (2.5); hence AT(t)=0. So (3.12) has a nontrivial solution
{Ai,p,m}-
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Let a,, = —u,(0), ¢; = cio. Then

am 0 0 Co 0 0
0 am 0 0 o 0
T - Cr-1
(3.16) A" (0) . a, 0
0 Cr+1 am 0
0 Cs—l am
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The elements a,, form the main diagonal. The other non-zero elements {c;} lie one in
each row and in each column, in the following position: ¢;(i =0, 1, - - -, s —1) is in the
ith row and (s — r + i)th column (reduced (mod s) to the range [0, s — 1)).

Let N;,.(¢) be the minor of A (¢) of order s — 1 obtained by omitting the last row
and ith column (i =0,1,--,s—1).

LEMMA 3.5. Let (s, k)=1. Then

(3.17) Nim(0)#0

5o N; () #0.

Proof. Consider i = 0. From (3.16) we see that in Ny, (0) every column except the
(s —r—1)th and the (s — 1)th (counting rows and columns from A’ (0)) has two nonzero
elements, namely a,, and a ¢;. Column (s —r — 1) has only the nonzero a,,, and column
(s —1) only ¢,—1. In Ny,..(0), row 0 has only the non-zero cy, so if we expand with respect
to this row we get a factor c¢o. The (s —r)th column contains this c¢o, so the remaining
factor is an (s —2)-order determinant obtained by deleting row 0 and column s — r. This
removes the a,, from row s —r, leaving only ¢;_, in that row.

So we get a factor ¢,_,, leaving an (s — 3)-order determinant obtained by deleting
row s —r and column 2(s —r). This removes a,, from row 2(s —r), leaving only c(s—,) in
that row. And so on. This process continues until we have the factor

(3.18)

(i=0,--+,s=1;m=1,---,s);

HCoCs—C2(s—r) * * * Cli-1)(s—r)»

where i in [0, s —1] is such that i(s —7)=s—1 (mod s). For when we reach the factor
(3.18)then (i —1)(s —r)=r—1,so the last termin (3.18) is ¢,_1, which isin column s — 1.
Now there is no a,, in this column, so the process we began stops. If i = s — 1 then (3.18)
is the value of N ,,,(0). If i <s — 1, there remains a determinant of order s — 1 — i, one of
whose columns is the (s —r—1)th, and s —r—1=(i +1)(s —r). This column contains
only an a,. Expanding in terms of this column we delete the ¢,_,; from column

(s=r—=1)+(s—r)=(i +2)(s —r) (mod s), so we get another factor a,,. And so on; so we
have

) i-1
(3.19) Nom(©)==a;, "™ - Il cisn-
=

Hence (3.17) holds for i =0. A similar argument applies wheni=1,:-:,s—1.
Since No,(¢) # 0, the last equation of (3.12) is linearly dependent on the others, so
it can be ignored. We can take Ay, () arbitrarily (all p, m) and solve for A, .(¢):

Ai,p,m(t) = (_l)‘ i,m(t)[NO,m(t)]-lAO,p,m(t)
(3.20)
(m=1,--+,s5;i=0,--+,5s—=1;p=0,-+ -, k—1).

System (3.20) is equivalent to (3.12), so {G;} given by (3.4), (3.13) satisfies (1.5) iff
{Ai,m(2)} satisfies (3.15), (3.20).
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Let {A;, .} satisfy (3.15), (3.20). Substitute (3.20) into (3.15). We get

. Nim-1(t) _ iNim (1) ,
(3.21) Nowm1(21) Aopm-1{t)=¢ Nowm(®) Ao pm(t) (alli,p, m).
From (3.15) with i =0:
(322) AO,p,m—-l({t) = AO,p,m(t) (all D, m)

So the set {A¢ .. (#)} is not completely arbitrary. However, (3.22) will hold if we choose
Ao pm(t) =1 (all p, m), so from (3.21) we get

Nim-1({1) Nim(2)
NO,m-l({t) NO,m(t)

Since the N;; series are independent of the A, ., series, (3.23) holds no matter how we
choose {Ao¢ p.m}.

Remark. Another proof of (3.23) can be given without use of {A;,,,..}. We sketch it:
Expand determinant Ny, ({?), using u;({t) = ¢ "ui+1(¢) from (3.1), so that

(3.23) =

(all i, m).

[ts_rq,s—r(t) —Um (t)]tezt = {s—r[ts—r i,s—r(t) - um+1(t)]-

The1 general term =*a;, 14, - a;,_, -1 is seen to have the factor { to the power
Yi-1{s—r+j;—i}, and this is congruent (mod s) to r +1, since ji, * - *, js-1 is a permu-
tationof 0,1, -+, s—2. Hence

(324) NO,m({t) = {r+1N0,m+1(t)'
By a similar argument we get
(3.25) Nim (@) =" Nipms1(2).

(3.23) follows from (3.24), (3.25).

LeEMMA 3.6. Let (s, k) =1. Then (3.20), (3.22) are equivalent to (3.15), (3.20); so
{G:} given by (3.4), (3.13) satisfies (1.5) iff {Aipm} satisfies (3.20), (3.22).

Proof. We know that (3.15), (3.20) imply (3.20), (3.22). Now suppose (3.20), (3.22)
hold. From (3.20) we get an expression for A, »—1({t) which, using (3.23), (3.22) and
(3.20) leads to (3.15).

Take {Ao,0(t)} arbitrarily. From (3.22) we uniquely determine {Aq1(¢)=
Ao ps—1(t)}, then {Ao, -2}, and so on. So choosing {Ag 0}, we uniquely determine
{Aopm} (all p, m) to satisfy (3.22); and by means of (3.20) we determine all {A;, .}.

THEOREM 3.1. Let (s, k) = 1. The most general p.s. solution of (1.5) defined by (3.4)
with (3.13) holding is obtained by taking {A¢ p.o(t) =Y -0 apont"} arbitrarily subject to
the condition

k~1
(3.26) Y 0™a,00#0 (n=0,1,--+,k-1),
p=0
and then uniquely determining the remaining {A,,m(t)} by means of (3.22), (3.20).

Proof. All has been established except (3.26). If {G;} satisfies (3.4), (3.13) then
G(x,t) =Z,:(l, Gi(x, 1) =E;° P, (x) need not define a p.s., since we may have degree
P, (x)<n for some n. Now

(3.27) Gt =3 T 3 Aupm(t)exp el (@ k(1))

m=1p=0i=0
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follows from (3.4). Using (3.20) this becomes

(3.28) G 0= 3 ki: Ront) Aoy (1) xp Ty m ()}

m=1p=

where

629 Ln()=I@ui0),  Ral)=[Nom@] ™"+ T 1Nim(o)

Expand (3.28) in an x-series; we get

s

k-1
(3.30) nlg. ()= Y X Ru(®)Aopm(OLm(]"

m=1p=0

Now [1, .()]" =[e10”u},(0)]"t" + higher powers, so if

(331) Rm(t)= Z rm,,'ti, Ao,p‘m(t)= E ap,m,,'ti
i=0 i=0

7

then
s k—1
nig0={et 3

m=1p=0

We are to determine when the brace is non-zero.
Take kth roots in (3.1) and set t =0:

(3.32) U (0) = ¢ P YR (0)w TP = ¢ X (0).

By Lemma 2.2, 1} (0) # 0, so our condition becomes

s k-1
(3.33) Y Y Fmolpmow™ ™ V" #£0  (all n).
m=1p=0
From (3.15) with i =0 we deduce
(334) AO,p,m(t) = AO,p,O({mt),
and taking ¢ = 0:
(3.35) Ap,m,0 = Ap,0,0-
Hence
k—1 k—1
Y Apmow™ = ¥ apoo0™".
p=0 p=0
So we are to have
s k—1
(336) Z rm,og"m"( Z wp"ap,o,o) #0.
m=1 p=0
Let
(3.37) (D NimONom O] = X dimi’
iz
so that

s—1
I'm,0= Z di,m,0~
i=0

Y Fn0@pmo0”" Uk (0)]"}t" +higher powers.

237
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From (3.23) we have
dl’,m—l,O = {idi,m,o, dl',m,O = {~midi,s,0a

)
s—1 -
(3.38) Fm,0 = gof dis0.

We are therefore to have

T o 2 ) (L 0" pn0) #0.

i=0

The sum on m is s if i =n (mod s) and 0 otherwise, so we must have
k—1

(3.39) (8dns0) L ©”ap0,0#0.
p=0

(The n in d, 0 is to be reduced (mod s).) Now d; .0 # 0 by Lemma 3.5, so we obtain
condition (3.26), to hold for all n; hence for n €[0, k —1], since w* = 1.

In (3.28) replace Ao, (¢) by its value from (3.34); then use the property A .k, =
Ai,p,,'. We get

Gx,)= 3 T Ru(0)Aopoll™) exp tlym(D};

m=1p=0

SO

Nim(t)
3.40) G(x,t)= 1)
(3.40) G(x,0)= pZOmZIEO( )Nom( )
There remains the question of the existence of p.s. solutions of (0.4) that do not
have a g.f. of the form (3.40). On this point we have
THEOREM 3.2. Let (s, k) = 1. A p.s. {P.(x)} is a solution of (0.4) iff its g.f. is of the
form (3.40), with {Ao p0(t)} subject to condition (3.26).

Proof. The necessity is given by Theorem 3.1. Now let the p.s. {P,(x)} satisfy (1.5),
with g.f.

Agpo(d™t) exp {xI (L™ T X (T )}

(3.41) G(x, 1) =3 Pa(x)i" =3 ga(H)x"
0 0

Let G(x, t) be given by (3.27). Then (3.28) holds iff (3.20) is satisfied. From (3.28)
we pass to (3.40) by use of (3.34), which is equivalent to (3.22). We now show that
conversely, if (3.28) and (3.40) hold then (3.22) is satisfied.

Define E, ,..(¢) by

AO,p,m (1= AO.p,O({mt) + Ep.m(t)-

Substitute this into (3.28) and form two double sums. The first one reduces to the right
side of (3.40), so since (3.28) and (3.40) both represent G(x, t), we have

S S Run(0)Epm(t) exp (xI ("t (1))} = 0.

m=1p=0

It follows by Lemma 3.3 that
R.()E,m(1)=0  (allp, m).
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The work of § 2 shows that for each root u(¢) (with kthroot u*(¢)) there is a solution
of form (2.8). Let m be fixed. Then there is a solution of (1.5) of the form

G(x, t)= Z Apm (1) exp {xI (0t (1)}
=0

Hence u} (1) mustbe presentforallm =1, - - -, s in the general solution G(x, t) of (1.5).
Now if R,,(t)=0 for some m, say m = b, then from (3.28) we see that the general
solution of form (3.27) does not involve u7 (¢). This contradiction shows that R, () #0
for all m. So E,,,.(t) =0, and therefore (3.22) holds.

By Lemma 1.2 it suffices to show that {A,,0(?)} can be chosen in (3.40) so that
when (3.40) is expanded in a series in x, then the coefficient of x" is g,(¢)-
(n=0,1,: -, k—1). The following system must be satisfied:

s k—1s-1
34D nle0= T T T CURER Ao @ ¢ )T

(n=0,1,---,k—-1).
Since {Ao ,,0(¢™t)} represents a set of sk functions, we need sk equations, which we
obtain by replacing ¢ in (3.42) by &1, - - -, ¢*'t. Using (3.23), this leads to the system

(343) n'g,,({’t) ZZZ( 1) {uN(l)m((t))

(n=0,---,k—=1; j=0,--+,s—1), where we write X, ,,(¢) for Ag,0({™t). Define
B, (t), g (t) by

Xpm (O (@™ u* ()T

(344) th,m(t)=I(wp£m“1tu*(£m‘1t)), t" 8n (t)—gn(t)
We can cancel ¢" from both sides of (3.43) to get

nj_x Tg\ — _ igji M,m(t) n
(3.45) n!d{"gn ('t —'an{j;( D¢ N—_o,m(t)B"""(t)X"""(t)

(n=0,---,k=1;7=0,---,5—1).

If the sk-order determinant ®(¢) of the coefficients of {X,, .} is #0 we can solve for
the unknowns. We shall show that G)(O) #0. In (3.45) take the order X1, X032, - **
XO,s; Xl,l; cety, X] sy, Xk 1,15 ° y X.k—l,s' From (323) we derive

ji Nim(£) Nim—i(L't)
(3.46) E Nom @~ Now (1)

Also, B} (1) =[e10”¢™ 'u*(0)]" + higher powers, so the coefficient of X, . in (3.45)
has for ¢ =0 the value

b

z m—j (0)

{ go( DN No,m-;(0)

This is the general element in ©(0). Now [e,4*(0)]" is a nonzero common factor of all
the elements of a row of @(0). We drop this factor and denote the new determinant by
©*. The general element of ©* is R,,_;0""¢" ™", where R; = R;(0) is given by (3.29).
If we choose the rows of ®* in the order (j, n) = (0, 0), (0, 1), - - -, (0, k—1); (1, 0),
(1, k=1);-++;(s—1,0), -+, (s —1, k—1) then the corresponding elements of @*

in row (j,n) are Ry, Ro-i¢", -+ -, Rs_,{"(s_”; Ri_jw", Ry il"0", -+ -, Rs_,{”(s'”w";
; Rlﬁ,w("ﬁl)", e Rs_,{"(s“”w(k'l)". Indices on R’s are to be reduced (mod s).
Determinant @* can be described as follows: Divide the matrix of ®* into blocks,

Simt e P s )
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each of k rows and s columns. Denote the upper left block (inrows 0,1, - -+, k—1 and
columns 0, 1, - - -, s —1) by [0, 0], the one just below it by [0, 1] and the one just to the
right by [1, 0]; and so on. Then block [p, i] (p=0,---,k—1;i=0,---,5s—1)is
Rs—-l’+1 Rs—i+2 Tt Rs—i+s
(3.47) [P, i]= R_i10” Rs—i+2{wp e Rs—i+s£s_lwp
Ra@® T Rl 16T TR g T

To show that ®* # 0 we need some lemmas. Let

R, R, - R,
(3.48) R*=|R; Ri: 'R
R2 R3 * R1
Regarding {R;} as variables, the following identity is known:
s—=1 (s—1 .
(3.49) R =T{'S ¢"R.a}.
i=0 Ln=0

LEMMA 3.7. Let (s, k) =1 and let {R,, = R,,(0)} be given by (3.29). Then
(3.50) R*#0.
Proof. From (3.25) we derive
Nis-i (&)= PN (),
$O

N.,,s(0)
NO,s (O) '

The brace is s if n =j and 0 otherwise, so by Lemma 3.5, R* # 0.

LEMMA 3.8. Regarded as a polynomial in the variables {R;} the determinant ®* is
not identically zero.

Proof.Let Dy = ®*when R; =1, R; =0 (i # 1). The elements in each row contain ¢
to the same power, so we may remove ¢ completely from Dy, obtaining a new
determinant DY%. In rows 0,1, ---,k—1 all elements in columns other than
0,s,2s,:--,(k—1)s are zero; so using the Laplace expansion we express D as the
product of the nonzero kth order Vandermond V in the quantities 1, w, - - -, 0" !, and
a determinant D{_,y, of order (s —1)k. Moreover D _;y, is like D¥ in permitting a
Laplace expansion, into the product of the same V and a determinant D{_,, of order
(s —2)k. This latter is likewise expansible, and so on. We finally evaluate D, as {*V°
(a, b positive integers). So Dy, # 0.

LEMMA 3.9. Let (s, k) =1 and let R,, = R,,(0) be given by (3.29). Then

(3.51) O*#0.

Proof. In ®* subtract column 0 from each of columns s, 2s, - - -, (k —1)s; column 1
from each of columns s +1,2s+1, - - -, (k —1)s + 1; and so on. Finally subtract column
s —1 from each of columns 2s—1,3s—1, - -+, ks —1. We obtain zero elements in the
part of all columns s, s +1, - - -, ks —1 that are in rows 0, k, 2k, - - -, (s — 1)k, so by the
Laplace expansion we express ®* as the product of R* (given by (3.48)) and a
determinant E -,y of order s(k —1) whose columns are in the old columns s, s +
1, -, ks—1.

E -1 has blocks [p,i](p=0,---,k—2;i=0,:--,s—1) each with k — 1 rows

s—1 . .s—1 s .
5 Rea=¢7 3 ] £ gmim)
n=0 n=0 m=1
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and s columns:

(3.52)
R 10 4-1)p+1 Reivzla-per  *++  Rycind’ 'a-1)pn1
[p.i1= Ryin@u-vpsz_ __ Re-isad’@ucvprz_ 0 Recinol ™ “auaypsa
R iv1a(-1)p+k-1 Rs—i+2{k_1a(k——l)p+k—l T Rs—i+s{(k—ﬂ(5—1)a(k—l)p+k—1

where the a’s involve w.

Nowa;=w—1, #0for k > 1. When k = 1 we have @* = +R* # 0 (by Lemma 3.7),
so we consider k > 1. For later purpose we shall not use the above value of a,. Rather,
we observe that ay, a,, - - *, ax—1 cannot all be zero since then a column of E; -1y would
consist of zeros, making Ex-1), hence ®*, identically zero in {R;}, contrary to Lemma
3.8. So at least one of a,, -, ax-1 is nonzero, and it is no essential restriction to
suppose that a; # 0.

From columns s, 2s, - - -, (k — 1)s subtract respectively the following multiples of
column O0: ay/ai, az-1/ai, asi-1/a:, etc. Then from columns s+1,2s+
1,---,(k—1)s+1 subtract the same multiples of column 1; and so on. A Laplace
expansion gives us a product of R* by a power of £, by a new determinant E 5. This
latter has blocks [p, i] (p=0,---,k—=3;i=0,---,s—1) of Kk —2 rows and s columns.
[ p, i] can be obtained from (3.52) as follows: Delete the top row, and in the remaining
rows replace a@-1)p+j by bk-1)p+i-1 (=2, -+, k—1), where the b’s involve w. Note
that if we assume for example that a, # 0 instead of a,, the determinant that we would
get for E -2 would be of the same character as the present E ), SO it is not a
restriction to take a, #0.

Notallof by, - - -, by—» are zero (otherwise @* = 0in {R;}); and generality is not lost

in assuming b; # 0. We can then continue the process of reducing E -2y, and so on. We
finally get

(3.53) @*=R* . E

where E involves w, { and is independent of {R;}. By Lemma 3.8, E #0; so ®* # 0.

System (3.45) can then be solved by Cramer’s rule, to give a unique solution
{Xo.m()}; and each X, ,, is a power series. If X, (¢) is to be identified with A ,,0({ ™) it
should be verified that X, ,,,({t) = X}, . +1(¢). This is done as follows: In (3.45) change ¢ to
{t. This effects a permutation of (3.45), with X, ,,(£¢) in place of X, +1(¢); so by
uniqueness of solution these two functions are equal.

We conclude that the set{A ,0(t)} (p =0, - - -, k —1) satisfies (3.42), so by Lemma
1.2 the given p.s. solution {P, (x)} of (0.4) has a g.f. of the form (3.40). Condition (3.26)
holds since {P,(x)} is a p.s.

Remark. In Part II we shall treat the case (s, k)> 1.
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A STRONGER LOGARITHMIC INEQUALITY SUGGESTED
BY THE ENTROPY INEQUALITY*

KENNETH B. STOLARSKY¥

Abstract. Let py,- -+, p, be n probabilities that sum to 1. The classical entropy inequality asserts
that Xnp; log np; is nonnegative. We show that np; can be replaced here by (np;)® where 6=
1+(n—-1)""=(log n)"!. Thisis a stronger result, and nearly best possible. For n = 2 the best possible result
follows from the nonnegativity of the coefficients of a certain class of power series.

1. Introduction. The classical entropy inequality (see, for example, [1, pp. 14-15],
[2, p. 15], or [3, pp. 15-18]) asserts that for p; =0 and

we have

(1.1) — Y, pilogp;=logn.
i=1

If we introduce a new parameter 6, this can be written as

n

(1.2) S(0)= 3 (np;)° log np; =0
i=1
where 6 =1.
THEOREM 1. The inequality (1.2) is true for

(1-3) 6=0(n)z1+————
n—1 logn

Examination of S'(6) shows that the left side of (1.2) is increasing in 6, so the
theorem is stronger than the classical inequality. For n = 2 inequality (1.2) is even true
for @ = 3; this is best possible, and is deduced in § 4 from Theorem 2, a result that asserts
the nonnegativity of the coefficients of certain power series. For n =3 the optimal 8 is
probably a transcendental number. It is possible (and suggested by what follows) that
for large n and optimal 6, there are cases of equality other than the case p; = 1/n for all i
(the sole case of equality in the classical entropy inequality).

For n large the general form of Theorem 1 cannot be improved too much. To see
this, set

1 vn—-1 1 1

1.4 = — = —————— 2=i=n),
( ) pl n n P n nm ( l n)
and

2loglogn
(1.5) 0=1——"——,

logv2n
Here again

(1.6) 6(n)>1 asn->oco,

* Received by the editors December 12, 1978, and in revised form April 23, 1979.
1 Department of Mathematics, University of Illinois, Urbana, Illinois 61801.

242



A LOGARITHMIC INEQUALITY 243

However, for n large,

S(o)=(1+~/7—"1)"1og(1+Jﬁ)+(n—1)(1-J ! 1)9 log(l—J1 1)
n— n—

=V2n (log n)2 log V2n-.5Vn—1<0.

For brevity we set

1.7)

1 1

x—1 logx’

(1.8) hix)=1+
so the expression on the right of (1.3) is 4 (n). Note that we can remove the singularity of
h(x) at x =1 by letting A(1) =3, and that since

(1.9) h'(x)=x""(logx)?~(x—1)7?=0

the function A (x) increases monotonically to 1 as x - co.

2. Reduction to a two variable problem. Let x; = np; and x = (x4, - * *, x,,). For any
n-vector u = (uy, * -+, Un), the inequality u =0 shall mean u; =0 for 1 =i =n. We also
define

G(M) = Z U;.

i=1

Theorem 1 now asserts that

2.1) F(x)=Fylx) = ilx? log ;=0
provided that
(2.2) x=0, G(x)=n, and 0=h(n).
Suppose Theorem 1 is false. Then there would be an n-vector u such that
(2.3) uz=0, G(u)=n, and F(u)<O.
Clearly, for ¢t > 1 sufficiently large,
(2.4) F(tu)>0.
Hence by continuity there would be a number ¢ = ¢(9) > 1 such that
(2.5) tu=0, G(tu)>n, and F(tu)=0.

We conclude that it suffices to show the following.
THEOREM A. Let § = h(n). If

(2.6) x=0 and Fy(x)=0
then
2.7) Gx)=n.

Remark. If ¢ >0 and

k()=t"logt,
then

—(ec) '=k()=0, O0=t=1;



244 KENNETH B. STOLARSKY

in fact, k(#) is monotonically decreasing or increasing depending upon whether or not
t=exp (=¢™"). Thus the point set M defined by (2.6) is bounded. Aside from the
isolated point 0= (0, 0, - - -, 0), each point in M has some co-ordinate no less than 1,
and some co-ordinate no greater than 1. In fact, M —{0} is a smooth compact manifold
whose boundary is contained in the boundary of the first octant of n-space.

We shall prove Theorem A by induction on n. For n = 1 it is trivial. Assume true for

positive integers less than n. We proceed to establish it for n. First, if x; = 0 for some j,
then

(2.8) F(x)=Y x{logx;=0.

i#j

Also, by the remark after (1.8),

(2.9) h(n—1)=0.
Thus, by the induction hypothesis,
(2.10) G(x)=‘§x,~§n—1<n.
i
But since F(1,1,---,1)=0and G(1, 1, - - -, 1) = n, the maximum value of G(x) must
occur at an interior point. At each such point we have the Lagrange multiplier condition
(2.11) VF(x)=uVG(x).
Thus
(2.12) w=0x{"logx;i+x{", (1=i=n).
Define
(2.13) f(t)y=60t""log e+
Then
(2.14) f()=t""[0(6-1)logt+(26—1)].

Hence f'(¢) is positive for ¢ small, negative for ¢ large, and f'(,) = O for a unique #,. Thus
a horizontal line cuts the graph of f(¢) at most twice, and by (2.12) the x; can assume at
most two distinct values. Call these values x, and yo, and their respective multiplicities
n, and n,. Thus

(2.15) ni+n,=n and G(x)=nixo+nayo.

If n; or n, vanishes (say for example n, =0) then

(2.16) F(x)=nxg log xo=0

and xo = 0 or 1. This implies G(x) = n.If x, or y, vanishes (say for example yo = 0) then
we see similarly that xo=0 or 1. Since this implies G(x)=n;=n, we see that the

difficulty lies in the case where ni, n, xo and yo are all positive. Set A =ny/n, SO
1—A=n,/n and

(2.17) 0<1l/n=A=1-(1/n)<1.

By dividing F(x) and G(x) by n, we see that it suffices to prove the following result.
THEOREM B. If x¢=0, yo=0, 6 Zh(n),

(2.18) Ax§ log xo+(1—A)yg log yo=0,
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and A satisfies (2.17), then
(2.19) Axo+(1—=A)yo=1.

Henceforth we shall drop the subscripts from x, and yo. Thus Theorem B says that
the graph I'=T'(A) of

(2.20) Axologx+(1—)¢)yology=0
lies in the region bounded by x =0, y =0, and
(2.21) Ax+(1-A)y=1.

It is important to note that aside from the isolated point (x, y) = (0, 0), the graph I lies in
the union of the strips 0=y =1 =x and 0=x =1 =y, and is, moreover, connected. [To
see the latter, first consider the part of I in y =1 =x. Let y* be the unique value of y,
satisfying 0 <y <1, such that —y° log y is maximal, and choose x* so that (x*, y*)eT.
Then as y increases continuously and monotonically from 0 to y*, the value of x
(uniquely determined by y) increases continuously and monotonically from 0 to x*. As
y increases from y* to 1, the value of x (again uniquely determined by y) decreases
continuously and monotonically from x* to 1. The same considerations hold for
x =1=y, and these two parts of I are joined at (1, 1).]

3. The proof. We shall show it suffices to prove the following.
THEOREM C. If x=0, y=0, 6 = h(n), and

(3.1) Ax+(1=-A)y=1

then (i) for (x,y)#(1, 1), (1, 0), (0, 1), or (0, 0) we have the strict inequality
(3.2) F(x,y)=Ax’logx+(1—21)y° log y >0,

and (ii) there is a neighborhood of (1, 1) such that

(3.3) Ax+(1-A)y=1

implies

(3.4 F(x,y)=Ax’logx+(1—A)y°logy =0

with equality only for (x,y)=(1,1).

To see this sufficiency, note that if Theorem B were false, then by Theorem C the
graph of T would not be connected. We now prove Theorem C. Part (ii) is easily
established for >3 since the Taylor series expansion of F(x, y) about (1, 1) is

Flx,y)=Mx+1-D)y-D+(@-)Ax-1>+1-2)(y-1)?%
+0[(x-1’1+0[(y-1)’1.

For part (i) we can assume, without loss of generality, that

(3.5)

(3.6) o<y<i<x.
From (3.1) we also see that

3.7 x<l/A=n.
Since

(3.8 A=1-y)/(x—y),
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inequality (3.2) becomes

3.9) (1-y)x°logx+(x—1)y°logy>0
or
(3.10) g(y)<g(x)
where, for all real x, the function g(x) is defined by

6

x° log x

(3.11) glx) =282

x—1
Note that x =1 is a removable singularity for g(x). Now

6-1

(3.12) g'(x)= X [(x—1)(6logx+1)—xlogx].

(x—1)?

If g'(x) =0, then clearly 6 = h(x). However, by (3.7) and the remarks following (1.8), we
see that

(3.13) h(x)<h(n)=e0.

Hence g'(x) does not change sign for 0= x < n; an examination of small values of x
shows that g’(x) > 0 here. Hence the strict inequality (3.2) is valid, and Theorems 1, A,
B, and C are proved.

4. Some nonnegative power series. We shall show that if x,y>0and x+y =2,
then

4.1) x?logx+y?logy =0,

and that equality holds only for x = y = 1. This is equivalent to

4.2) F(z)=Fo(z)=(1+2)°log(1+2z)+(1—2)’ log (1—-2)=0
for

(4.3) =3 and 0=z=1.

By examining the first few terms in the power series expansion of Fy(z), we easily see
that (4.2) is false for 9 <3.

We shall in fact establish the following stronger result.

THEOREM 2. Every coefficient in the power series expansion of Fy,5(z) about z =0 is
nonnegative.

Before establishing this, we obtain some preliminary results.

DerFINITION. Call the sequence a;, wherei = 1,2, 3, - - -, convolution nonincreasing
if the associated sequence

k—

1
(4'4) bk = Z aiai—i, k =2, 3, 4, T,
i=1

is nonincreasing for k = 2.

LEMMA. The sequence of reciprocals 1/i, fori=1,2,3,- - - is convolution nonin-
creasing.

Proof. By partial fractions, the inequality bi.1 = b, is in this case equivalent to

K1 k1 1 k—1[1 1 ]
- = - e
“.5) ,Z‘li+,~§1k+1—i_(1+k> PN et




A LOGARITHMIC INEQUALITY 247

which is in turn equivalent to the obvious fact that

2 1kt [1 1 ]
4.6 —=— —+—.
(4.6) k k igl i k=i

Next, let ® denote the principal value of the ath power, so that (1 + x)* is given by
the usual binomial expansion for |x| < 1. We write p(z) >0 to indicate that the power
series expansion of p(z) about z = 0 has nonnegative coefficients.

THEOREM 3. Let 0=« =1. Suppose that

4.7 O=scn=a=1, 1=i<oo0.

For |z|<1 define

“.8) g)=1+ % (-1c,"

and

4.9) h(z)=g(2)*

Then all power series coefficients of

(4.10) P(z)=z(1+2)*h(z)+(—=2)1=2)*h(~-2)

are nonnegative.
Proof. We have

(1-2)*h(=2)={1-2)A+c1z + 22’ ++ - )}"
(4.11) ={1+(ci—Dz+(c2—c)z’+ -} ={1-p@@)}*
= 1—ap(2)+ﬂ%7_—1—)p2(2)—- =1-4(2)
where p(z) > 0 and hence g(z) > 0. Thus

(4.12) P(z)=z[q(z)—q(=2)]»0.
To prove Theorem 2 take o =3 and
(4.13) g(z)=[z""log (1+2))%;

that the ¢; satisfy (4.7) here follows from the lemma. Thus
(4.14) zh(z)=log (1+2z),

s0 P(z) = F;,»(z) and the result follows.
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ON DIRICHLET’S PROBLEM FOR ELLIPTIC EQUATIONS IN
SECTIONALLY SMOOTH n-DIMENSIONAL DOMAINS*

A. AZZAMYt

Abstract. This paper is concerned with the first boundary value problem for linear second order elliptic
equations in a domain ) € R"(n = 2) with edges on its boundary. Conditions sufficient for the solution u to be
in C,(Q)), 1 < » <2, are given. Further statements concern the nature of singularities which the second partial
derivatives of the solution may have at the edges.

For smooth domains, smoothness properties of solutions of general boundary
value problems for linear equations have been thoroughly investigated; cf. [1]. For
domains with piecewise smooth boundary and for general second-order elliptic equa-
tions, however, very little is known about the smoothness (up to the boundary) of the
solution; cf. [2]-{6], [8]. In this paper we consider linear elliptic equations in sectionally
smooth n-dimensional domains (n = 2), especially near an edge.

Notations. u|; denotes du/ox, and u|; denotes 8’u/ox; ox;, We also use the
summation convention, that is, we sum over an index that appears twice (e.g.,
aul; =Z:'=1 a;(0u/dx;)). Furthermore, x =x1,* * * , X, le2 =x2+. ..+ x2. The distance
between points P and Q will be denoted by PQ.

In this paper we consider the Dirichlet problem for the uniformly elliptic equation

(1) Lu=ay(x)u, +a:(x)u,+a(x)u=f(x)

in a domain ) the boundary I' of which consists of (n —1)-dimensional surfaces
I';, Ty, - - -, Tk belonging to Cy4,, 0<a <1. We assume that the surface I'; intersects
only with I";_; and I';;, along (n —2)-dimensional manifolds S;_; and S;. We study in
detail the case k =2, the behavior of the solution in the neighborhood of other
manifolds may be similarly studied. Let '=T, U, 'y NI';=5 and Pe S. Let R, and

R, be the planes which touch I'; and I'; at P making an angle y(P). We transform the
equation

(2) aif(P)uh,‘ =0

to canonical form. This equation is an equation with constant coefficients since the point
P is fixed. After the transformation, the planes R; and R, will be transformed to other
planes with angle w (P) between them. It is clear that w (P) does not depend upon the
way used to transform (2) to canonical form. From [1] it follows that if the right hand
side and the coefficients of (1) belong to C,({2), and if the boundary value ¢ of u(x) is
continuous on I' and belongs to Cz.,(I'\S) then u(x) € Cr1+4(Q\S) N Co(Q). We prove
the following

THEOREM 1. If for any P € S, w(P) < 1, then there exists a number v, 1 <v <2 such
that u(x)e C,(Q).

We first prove this theorem in a special setting.

Consider the two hyperplanes x; = x, tan 8 and x; = x, tan (w + 8), x; =0 inter-
secting at an (n —2)-dimensional space S, with the angle w <, where 7m/2<w+
28 <. By G,, we denote the part of the sphere centered at the origin with radius ro >0
which is included between the two hyperplanes. By I',, we denote the part of the
boundary of G, lying on the hyperplanes. Let S,,= S, NT,,.
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THEOREM 2. Suppose that in G;(d <1) the function u(x) satisfies the uniformly
elliptic equation

3) Lou Eag(x)uhj + a?(x)uh +a°(x)u=1"(x),

where
@) ag(O) =8y, 5, j=1,-+ -, n. 8;is the Kronecker delta.
(ii) aj), a?, a® and f° belong to C,(G,), 0<a <1.
(iil) U, =o€ Cr1a(la\Sa) N Co(Ta).
(iv) o vanishes on S, together with its first derivatives in the directions 0 = 3 and
0=w+p.
Then there exists a number v, 1 <v <2, such that u(x) € C,,((—?,o), provided that 4ro<d.

To prove this theorem we need two lemmas and we will make use of the following
well known a priori estimate [1].

In the n-dimensional domain Q with boundary Q we consider a bounded solution
of the elliptic equation Lu = F(x) (cf. (1)) which coincides on I'= Q) with a given
function ®. Consider a subdomain Q; of Q with the property that Q; N lies in the
interior of T. If the coefficients of L and F(x) belongs to C,(Q) and if I'e C,., and
®e C,.o(I) then

leel22e = collluello+ IFS + D21,

where the constant ¢, is independent of u.
LEMMA 1. The solution u(x) of (3) satisfies the inequality |u(x)| = Mr" in G,,, where
1<v<2,r*=x3+x2and M is independent of x.
Proof. Consider the function {(|x|) € Cs in Gy,,, where
(xD)=1 if0=|x|=2r,,
and

L(x])=0 if 3ro=|x|=4r,.

The function W(x) = {u is defined for |x|=4r,, x € G4 and satisfies there the elliptic
equation

) LoW =F ={f"~2a3{,u, — aidu — aifu.

OnT,,,, W(x) concides with a function ¢, satisfying conditions (iii) and (iv) of Theorem
2, with d replaced by 4r,. Consider the function

V =—Mr" sin A6,

where r’=x}+x3, @=arctanx,/x;,, M>0 and 1<v<A=n/(w+2B)<2. Then

2
LoV = Vi, + Vi, + ¥ (aj=8)V|,+aiV+a3V,+a’V

ij=1

2
=M@\ =v)r" %sinA0+M Y Hy(ah—8,)r" %+ Mhir’ '+ Mhyr”,

Lji=1

where H;; and h; are bounded functions of 8, A and ». We put

2
Y |Hyl+|hi|+]ha]=A,  A>0.
25

L=
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Since ag(x) are continuous functions and af}(O) = §,, forany e >0 wecanfindro>0
such that for |x|<4r, we have

lad(x)—8;|<e/4A, i j=1,2.

Thus in G4,, we have
LoVz=M[A*=v?)sinAB—¢elr’ >~ MAr" ' —MAr".

Choosing £ <(A*—»%) sin AB and r, sufficiently small, we obtain L,V =|F(x)|, hence
Lo(W —V)=0, in Gy4,,. We now prove that on the boundary of G4,,; W—V =0if M is
chosen sufficiently large. On I'4,, we have

W =V = io(x)+Mr” sin AB.

At any point x = x4, * * -, x, on I'4,, we have

Yo(x)= j Yo dt,
(O’O’xZ’"' )

where ¢ is the direction from (0, 0, x3, - * -, x,) to x and ¢ and ¢ are the derivatives of
Yo in this direction. Since ¢4 is bounded, say, |yb(x)| =2k, we have |¢o(x)| = 2kr.
Similarly |¢o(x)| = kr®. Thus on I'y,, we obtain

W—-Vz=—kr*+Mr"sinA\B=(M sin AB —k)r".
We choose M = k/sin AB. On |x|=4r,, x € G4 we have
W—V=Mr’sinA6=0.

Thus L(W — V) =0 inside G, while W —V =0 on the boundary. If we choose ro
sufficiently small, we may apply the maximum principle for domains with small
diameter [7]in Gy,,. Thus W—V =0, or W =—Mr" sin A0 = —Mr" in Gy,,. Taking ro
sufficiently small and M sufficiently large we prove similarly that W = Mr” in Ga,,. This
proves the lemma since W=u in Gy,

LEMMA 2. At any point x € Gy, |0u/dx;|=Myr"~ Yi=1,---,n, where M, is
independent of x.

Proof. Consider the following domains in Ga,:

To
Dp = {xl, X € Gzro'i'mfr<2p+“ |x,|<2p, i >2}

D,p =Dp_1 UDp UDp+1.

Here r*=x7+x3. By I', we denote the part of the boundary of D, lying on the
hyperplanes. Consider the transformation

(5) xi=xi/2%, i=1,2,--,n

This transformation transforms D, and D}, onto D, and Dy, respectively. In Dg the
function V(x') = u(x'/2") satisfies the elliptic equation

(6) b.,(x')V|.,+ 7 bi(x) Vi, + 2,,b(x')V‘ g(x')

where b;(x') = a,~°,~(x'/2p ) and b;, b and g are defined similarly. On I’y the values of
V(x"), ¢(x") = o(x'/2") belong to C,.,. Applying the a priori estimates in D, and Do
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we get

) IVIE= cofIVIZé+ 5l + oSk

2%
As before we can show that ||¢||5%. = k»(1/27)%. Also since | V||§° = |ul|§° = ko(1/27)"
and since ||g||29=k,;, we obtain from (7) |V|2%=k3(1/2")". Returning to the x-
coordinates, and noticing that |9 V/x ;| =||v|l,+, and that d V/ax; = (1/27)(u/dx;) we get
ou/ox:| = Myr” ™",

Remark 1. Similarly we can prove that |8°u/dx; 9x;| = M,r* ™2

Proof of Theorem 2. Consider any two points P and Q in C—?,o with distances r; and r,
from So, where 0=r,=r,=ro. If r,=3r; then PQ=3r; and |u'(P)—u'(Q)|/PQ" ‘=
2Mr{"'/(Gr)" ' = H where u' is any of the derivatives du/ox;. If r,>3r, we consider
the domain

n o .
Dp={xeG,0,—2—§r§r1,|x,~—x,~|§—i-,z=3,'-~,n ,

where r>=x?+x3 and (x}, - - -, x2) are the coordinates of P. The transformation

2r1x‘ .
X =— i=1,2,
ro
2r
0 1 0 .
xi—xi =—(xi—x;) i>2,
ro

transforms Dp into Dp where
ro ro 0 ro .
DIP={Z<r1<_’ Ix;_xi|<z,l>2},

rl

=x2 +x%. In D} the new function V(x') satisfies the elliptic equation

2 2
cij(x')u|ij+ﬁci(x')u|,.+(3’-‘~) c(x') =(-2—’l) h(x'),
ro r ro

0

Cijy Cis €, h and ¢ are the transformed functions ag, a?, a°, f° and ¢o. Consider

ro
D$={§<r =ro, xj—x?|=— ,t>2}

4

In Dp and Dp we apply the a priori estimate again, finding
JolPEe = Gl ollgh+ (22) 1Al 25 e,

where I'pis the part of the boundary of D which lies on the hyperplanes. As before we
can show that

o2 = Mors.

Noting that ||o]|2P = y|jv||2fa, v' = (2r1/ro)u’ and that HD?, (v') = (2r1/ro) " H2?y (u'), we
get H De. (u") =M} or equivalently u(x) € C,(Dp).

Now consider the case r, >3r;. In addition to P and Q we consider the point P;
lying on the normal from Q to S, with distance r, from S,. If PP, =3r,, then Qe Dp
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where u € C,. If PP, >3r,, then PO= PP, >21r, and PO=P,0 and

|w'(P) —u'(Q)| _[w'(P)—u'(Py)|_ [u'(P)—u'(Q)|

}_)_Q'u—l P"”—'P;J—l Plov—l

Mt
- (%"1)”—1 tHi=H,
since Q € Dp,. This proves the theorem.

Remark 2. Similarly we can prove that r'u"e C, (G,,) where 7 and 7, satisfy
O<ro=7—-2+rv<1.

Proof of Theorem 1. 1t is sufficient to prove that u € C,(Gp,,), where Gp,, is the
intersection of the domain Q with a sphere of radius p, centered at any point P € S. Let
P=(x%,--+,x%) and let the two surfaces intersecting at § have the representations
x1=g(x2,**+,x,)and xo, = h(x1, x3, * * *, X,,) in the neighborhood of the point P, where
g and h belong to C;.,. The transformation

Yi=Xx1—§,
(8) y2=x2—h,
y;=xi—x?, i>2,

takes the point P to the new origin. The two surfaces x; =g and x,=h will be
transformed to the planes y; = 0 and y, = 0. Equation (1) will be transformed to another
elliptic equation. Suppose that the transformation

n

(9) Z; = Z aijyj, i=1,'.',n’

ji=1

transforms this last equation to the equation
(10) dij(2)uy, +di(2)u, +d(z)u =t(z),

where d,,(O) = 8,’,’, i, ] = 1, 2, R (B

This transformation always exists and its Jacobian is different from zero. The two
planes y; =0 and y, =0 will be transformed to others with angle w = w(P) between
them, w < 7. We finally use a transformation such that the two hyperplanes have the
equations 7, =n; tan 8 and 7, =n; tan (w +B), where >0, and 7/2<w+2B <.
Any subdomain Gp,, < will be transformed into Gg,, lying between the two
hyperplanes. In Go 4 = G, < Gy ,, the new function u;(n) = u(x) will satisfy an elliptic
equation of the type (3), satisfying the conditions (i)—(iii). Let the boundary values of
u1(n) on the hyperplanes be denoted by ¢(n). Consider the function

qa(n)=¢(0,0, 73, -+, n.)+(n1cos B+nzsin B)¢s(0,0, 03, - -, 1)

+

Sne (=n1sin B +m2 cos B)[bu+5(0,0,n3, + +, M)

—¢B(O, 0, n3, " °°, "]n)COS w],

where ¢z and ¢,.p are the first derivatives of ¢ in the two directions 6 =8 and
0 = w + B normal to Sp. The function u,(n) = ui1(n)—q(n) satisfies in G4 an elliptic
equation of type (3) and coincides on I'; with a function o(n), satisfying all the
conditions of ‘Theorem 2. Thus u,(n)e C.,(G-,o), ro<d and consequently u;(n)e
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C,,(G,o). Returning to the original x-coordinate we find that in some Gp,,, po <p1; u(x) €
C,(Gp,,). This proves the theorem.

Remark 3. From Remarks 1 and 2, we can also prove the following

THEOREM 1'. There exist numbers T and 7o, 0 <1, 10< 1 such that p™(6*u/ox; ox;) €

C,o(ﬂ), where p(x) is a differentiable function coinciding near S with the distance from x
toS.
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FREE BOUNDARY PROBLEMS IN SOLIDIFICATION OF ALLOYS*
VASILIOS ALEXIADESt AND JOHN R. CANNON%

Abstract. Multidimensional three-phase free boundary problems for semilinear diffusion equations are
studied as models for the solidification (or melting) of alloys. The intermediate phase represents the ‘“mushy
zone” in which the freezing of the remaining liquid provides a heat generation effect. The conditions on the
two interfaces are of Stefan-type on one of them and of fast-chemical-reaction-type on the other. The
existence, uniqueness and regularity of appropriately defined weak solutions are established when either
the temperature or the heat flux is prescribed on the fixed boundary.

Introduction. Multidimensional three-phase free boundary problems for diffusion
equations of the form

a(u Z—I:= div [k (u) grad u]

are studied as models for the solidification (or melting) of alloys. These problems
(described precisely in § 1) differ from the usual Stefan problems in that a Stefan-type
condition [10], [4], [6] is imposed on one of the free boundaries and a fast-chemical-
reaction-type condition [2], [3] is imposed on the other.

Solidification (or melting) of pure substances can be modelled by (two-phase)
Stefan problems, but most actual solidification processes involve alloys rather than pure
metals. Contrary to the isothermal freezing of a pure metal, the liquid alloy freezes
partially and gradually until its temperature drops to a eutectic temperature and then
the remaining liquid freezes isothermally at that temperature [11], [5]. Thus, the
liquid and the solid are separated by a ‘“mushy zone”’ between two isothermal surfaces
at the liquidus and solidus temperatures respectively. At the solidus temperature, latent
heat is released due to the freezing of the remaining liquid and thus imposes a
Stefan-type condition across the solidus interface. On the other hand, there is no latent
heat being generated at the liquidus temperature which dictates a fast-chemical-
reaction-type condition on the liquidus interface. On the fixed boundary either the
temperature or the heat flux can be prescribed and so we consider two separate
problems: Problem I with Dirichlet boundary conditions and Problem II with Neumann
conditions on the fixed boundary.

The precise mathematical problems are described in § 1. As is well known, there
are considerable difficulties in multidimensional free boundary problems, and naturally
we look for weak solutions which are defined in § 2. Problem I is studied in §3 by means
of monotonicity methods developed by Brezis [1] (see also Lions [9]). For problem IT we
employ the compactness methods of Kamin (Kamenomostkaja) which appear in [7],
[81, [6], [2], [3] to obtain existence and uniqueness in § 4. These methods could also be
used to treat Problem I. The regularity results of Ladyzenskaja—-Solonnikov-Ural’ceva
[8] are used to show that the weak solution of either problem is actually Holder
continuous in certain subdomains.

The formulation and methods used here generalize naturally to multiphase prob-
lems with any combination of the two kinds of interface conditions considered here.

1. Classical formulation of the problem. Let G be a bounded domain in R” with
smooth boundary 3G. Set G(¢) = G x{t} and dG(¢):=9G{t}. For any T, 0 < T =00, let
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Q=0"=Ucicrand S=8":=U g, <70G(¢). Q is divided into three parts, Oy, Q.n,,
(corresponding to the solid, mushy and liquid zones) by the free (unknown) boundaries
Iy:=Uo==rI(t) and T';i=U o=,=7T(¢), the solidus and liquidus fronts respectively.
Here T;(t)={(x, 1) e G(t): ®(x, t)=®,}, T()={(x, 1) € G(t): (x, t) = ®,} are hyper-
surfaces in G(r) described by afunction®e C 1 Q) with V, ®(x, 1) r.r; #0,and ®;, ®, are
constants. We assume that ®<®; in Q,, D, <P<P, in Q,, and &, <P in Q, The
hypersurfaces I's(¢) and I',(¢) divide G (¢) into three parts, G,(¢), G,.(¢) and G/(¢), so that
QO = U o<i<1 Gi(t), i =5, m, L. In particular, I';(0) and I';(0) subdivide G(0) into G;(0),
G.,.(0), G,(0) some of which may be empty. Finally, let S;:=Q, NS, i =s, m, I, and note
that some of them may be empty.

In the mushy region ), the relative amount of the solid present at any temperature
is given by a (known) function f(u) called the solid fraction. At the liquidus temperature
6, there is no solid present and so f(6;) =0, whereas for 6;>u>6,, it is 0=f(u) <1,
where 6 is the solidus temperature. Thus f(u) is decreasing and its time rate of change
in the mushy region provides a heat generation effect which adds the term a (3f/d¢) to
the heat condition equation in ),,. At the solidus front I';, where the temperature is 6,
the freezing of the remaining liquid 1 — f(6,) provides a latent heat effect and creates an
interface condition of Stefan-type. On the fixed boundary S, either the temperature is
prescribed and this we will call Problem I, or the heat flux is prescribed and this will be
referred to as Problem II. These physical considerations lead to the following problem.

Find u°, u™, u' and ® satisfying the equations

(1.1), as(u*)"’;l div [k, (u*)V,u*] in O,

1.1),, am(um)a—gt—’-n=div [km(u"')qu"']+a%l;m) in Q,,,,
(1.1), a,(u’)";—‘;l= div [k, (u')Vu'l inQ;

the interface conditions (of continuity and heat balance)

(1.2) uw'=u"=6;, onT,

(1.2); u"=u'=6, onl,

13, a0V k(0] V@ =a[1 /(020 onT,
(1.3), (km(8)Vu™ —ki(8)V']- V,@=0 onTy;

the initial conditions

(1.4), u’(x,0)=hs(x) in G(0),

1.4), u™(x,0)=hy,(x) in G,(0),

(1.4), u'(x,0)=h(x) in Gy(0),

where h; < 6; <h,, <6, <h,, and either boundary condition of Dirichlet type
(1.5) u'=g(x,t) onS, i=sml (Problem I),

where g; <6, <g,, <#6,<g, or the boundary conditions of Neumann type

(1.6) k,-(ui)%% =gi(x,t) onS, i=sm,l (Problem II).
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Here d/dn denotes differentiation in the direction of the outer normal to S, « is a
positive constant (=density X latent heat per unit mass) and

a;i(u), ki(u), i =s, m, I, are continuous functions satisfying 0 < yo = a;(u) = v,
1.7) 0<yo=ki(u)=v1, i=s, m, [, and f(u) is a differentiable decreasing function
satisfying 0=f(u)=1, 0=—f'(u) = y,,

for some positive constants yo, y1, ¥2. We also assume that
(1.8) Gisbounded and 3aGeC*™*  (A>0).

The function ® is not uniquely determined; it is only one possible parametrization of the
surfaces I';, I',. The interface conditions of continuity (1.2) help in describing I, I'; as
level surfaces of the solution {u*, u™, u'}.

By a classical solution of Problem I [of Problem II] we mean a solution
{w’, u™, ‘u', <I>}_of (1.1)—(1.5) [of (1.1)-(1.4), (1.6)] such that u'eC(Q), Vu' e C(U\S)
[u',Vau'eC(Q)]and D2u’, Du'e C(Q), i=s,m, L

2. Generalized formulations of Problems I and II. We introduce the quantities

Adu)=[ " al@ dg+ | ane) de
Anwy=[an@)de Aw=] o) de;
Kw=[ k@ d§+jo'km(§> dz,

o, X
Knlw=[ kn©de  Kiw=[ ki) de;

us, in st hS9 in Gs (O), gs, in Ss,
u=<u™, inQ, h={hn, inGn(0), 8=1{8m INnS,,

ul in Ql’ hl, in GI(O)s 8 in Sla

and write the problems in the form

2.1), %As(u)=div [V.K.(w)] inQ,

2.1)m ST An(w) +af ()] = div [V,K,u ()] in O

@.1), %Axu) —div [V.K, ()] in Q;

(2.2) u=6, onrl, u=6, onl,

(2.3), VK. ()~ VKo ()] - V@ = a[1—(6,)] %? onT,

(2.3), [V.Ki(u)-V.K,(u)]-V,®=0 onT;;

(2.4) u=h inG(0);

(2.5) u=g onS (for Problem I);
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(2.6) —%Ki(u) =gi(x,t) onS§, i=s,m,l (for Problem II).

Let ¢ be a smooth test function in R**" such that ¢ (x, T) = 0 and ¢|s = 0 for Problem I,
whereas d¢/on|s =0 for Problem II. Write (2.1), equivalently as (3/3¢)[As(u) +a]=
div [V, K, (u)], multiply by ¢ and integrate over (), ; thanks to (2.2), (2.4) and (2.5) [resp.
(2.6)] we obtain

“0, e[As(u)+aldxdt+ IG

o(x, 0)[As(h)+a]dx+ j 0[A(6,)+a]® |VD| ! dT,
s(0)
(2.7)

s

=JJ Vsz(u)-Vx¢dxdt+J ¢§¥drs+0 [resp.+J' (pgst].
Q, Ts Ss

Ny

Next, multiply (2.1),, and (2.1); by ¢ and integrate to obtain similarly (note that
A (6)=A(6)=0, f(6,)=0)

], etant+afeardie | ot 0LAnB +afth) ds

m

- [ elan()+af0 10 vel " ar,
Ts

2.7)m =“' Vme(u)-chpdxdt—J (paKaL(u)dFs+J <p§£a"ﬁl—)dl",+0
Qrm r, r

Ny L Ony

[resp. + j ©8m dS],
s,

m

and

IJ @:A(u) dx dt+J o(x, 0)A;(h) dx
o, Gi(0)

= j VXK,(u)-quodxdt—J. gonl"ﬁO [resp.+J‘ ¢g,dS].
JJq, r, On sy

Now we introduce the quantities

—As(u)—a, —K,(u) foru<@,
2.8) a(u)=4—-A,.(u)—af(u), and k(u)=—K,,(u) for,<u<@,
—A(u) -Ki(u) for@,=u,

let us note that they are increasing and continuous except that a(u) has a jump at
6, so it could be considered as being multivalued there. We add relations (2.7)
together and observing that A,(6;)=A,.(6), that (8/9n,)K(u)—(8/dn)K,,(u)=
(VK (u) =V K ()] - (V®/|VD|) = a[1-£(6,)](®/|VD|) on T, by (2.3),, and that
(8/0n,)Km(u)—(8/9n,)K;(u) =0 on I'; by (2.3),, we find

”ﬂ ea(u) dx dt+IG(O) ¢(x,0)a(h) dx = “ﬂ V.k(u) Vepdxdt+0

[resp. ~I ®g ds],
N

(2.9)
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(the integral [ @{a[1—f(6,)]}®,|V®|™" dT cancels out since it appears on both sides).

For a classical solution u, the jump of a(u) at u = 6, does not affect the integral
since u = 6, on an (n — 1)-dimensional surface I'; which has measure zero. However, if
we do not want to postulate a priori that even a weak solution must take the value 6; on a
set of measure zero, then the meaning of the first integral in (2.9) is ambiguous. We
handle this difficulty in two different ways for the two problems.

Consider a( - ) as a multivated mapping by defining a (6;) :=[a(6; —0), a(6; +0)]=
[— ]Z: (&) dé—a, — I:: a,, (&) dé — af(6,)]. Then, a( - ) being continuous and increasing
has a continuous, increasing and single-valued inverse a (- ). Set A(-):= k(a7 '(+)),
which is also continuous (in fact Lipschitz), increasing and single-valued, and introduce
the new unknown

(2.10) vea(u), ie,u=a'(v)

so that k(u)= A(v). Expression (2.10) means v(x, t)=a(u(x,t)) if u(x, t)# 6, and
v(x, )€ a(8s) =[a(6;—0), a(bs +0)] if u(x, t) = 6, and thus v (x, ¢) is a function (single-
valued). This leads to the following

DEeFINITION (Weak solution for Problem I). A function u(x, t) is a weak solution of
Problem I (i.e. of (1.1)-(1.5)) if ue L*(0, T; H'(G)), u=g on S and u =a"'(v) for
some function v € L*(0, T; H'(G)) satisfying

T T
2.11) j (0, @0) di - j (V.A(v), Vo) di +(a(h), ¢(x, 0)) =0

for any smooth ¢(x, t) such that ¢(x, T)=0, ¢|s =0. Here (and below) (-, -) is the
L*(G) inner product and H'(G) denotes the usual Sobolev space. The weak
free boundaries I'; and I'; are the sets where {u = 6,}={a (6, —0)=v =a (6, +0)} and
{u=6}={v=a(6)=0}

For Problem II we proceed differently. Since k() is continuous and strictly
increasing, so is its inverse k(- ). Consider the multivalued mapping

a(k™(p)), if p # k(8,) =k,
(2.12) b(p) ={ . .
[a(6s—0), a(6,+0)], if p=k(6s)=«,
and introduce the new unknown
(2.13) v=k(u), ie,u=k'(v).

Let B(v) denote any function such that B(v) < b(v) in the sense of graphs, in other
words, B(v(x,1)=b(v(x, t))=a(k ' (v(x, 1) if v(x,t)#« and B(v(x, 1)) €b(k)=
[a(6;—0), a(6;,+0)]if v(x, t) =« (k =k(6y)).

DEFINITION (Weak solution for Problem II). By a weak solution of Problem II (i.e.

of (1.1)-(1.4) and (1.6)) we mean a bounded measurable function u(x, ¢) such that the
bounded measurable function v = k(u) satisfies

(2.14) ” {B(u)¢,+uA¢}dxdt+j B(k(h))¢(x,0)dx+jg<pdS=0
(9] G(0) S

for some function B(v) as above, and for any smooth ¢(x, t) such that ¢(x, T)=0,
d¢/dnls = 0. The weak versions of I'; and I'; are the sets where {u = 6,} = {v = k(6,)} and
{u = 6;}={u = k(6,) = 0}. Note that since h # 6, a.e., B(k(h)) = a(h) for any B as above.
We summarize the discussion up to now in the following
THEOREM 1. A classical solution of Problem I [ Problem II] is also a weak solution.
Conversely one can easily show (similarly to [6, p. 54], [2, p. 435)).
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THEOREM 2. A sufficiently regular weak solution is a classical solution.

In closing this section we collect some easily obtainable (from (1.7)) properties of
a(+), k(+), A(-) and b(-), which will be needed later.

LeEMMA. (i) a(r) is strictly increasing, and continuous except at r = 0, where it has a
jump of magnitude J'=a[1—f(6,)]; for any r>F in R, yo(r—7F)=a(r)—a(F)=
v3(r—=7) + T with y3 =y, + ay,; (ii) k(r) is strictly increasing and continuous ; for any r >
in R, yo(r—7)=k(r)—k(F)= ys(r—7); (iil) the derivatives a'(r), k'(r) are (in general)
discontinuous at r=6, r=0, and 0<vyo=a'(r)=vyis, 0<yo=k'(r)=vys3; (iv)
A(p):=k(a\(p)) is increasing, Lipschitz continuous: |A(p)— A(5)| = v3/ volp — 5|, and
there exist constants AT and A, AT >0, such that A\ip+A2=A(p), p=0, Aip+A,=
A(p), p=>0; (v) b(p) of (2.12) is strictly increasing, continuous, multivalued at p =
K =k(0s) and for any p>p

(2.15) Yoo —p)=b(p)-b(E)=Lp - 5) +J.
Y3 Yo

3. Existence, uniqueness and regularity for Problem I. We shall cast the problem
in a form for which the abstract existence result of Brezis [1, p. 31] is applicable. The
following will be required of the data:

(3.1) hel*(G), h#6, ae.,

(3.2) geHY*(S), g#6, ae.,

where H?(S) stands for the space W5 (S) of [8, p. 70]. Then g admits an extension to a
function

(3.3) ge H'(Q) such that g=¢ onS and g#6, ae.
We set

(3.4) zi=a@eH'(Q), z22=k(@ecH\(Q),
(note that a(g(x, t)) is single-valued a.e.), and define

(3.5) A(p)=A(p+2z1)—22

which has the same properties as A(p) (see Lemma, § 2).
We seek veL?(0, T; H'(G)) satisfying v=a(g)=zJs on § and (2.11).
Equivalently, this can be expressed briefly by saying that we seek the solution of

% _AA@)=0 inQ,
Jat
(3.6) v(0)=a(h) in G(0),
vls=zils on S,
in the sense of the dual of the space W"'(Q):={pc L*0, T; HXG)): e(T)=0,

dp/ote L*(0, T; L*(G))}, where A:H(G)-» L*(G) denotes the weak Laplacian.
Letting

3.7) v=w+zq
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we see that w e L*(0, T'; Ho (G)) must satisfy

w_ g . o,
S—t_—AA(W)_F in Q, F= atZI Az,,
(3.8) w(0) = wo=a(h)—z1(0),
A(w)ls’_—_oy

in the sense of the dual of W"'(Q). Next, using the bounded, linear, monotone and
self-adjoint operator E:L*(G)-» H(G)< L*(G) defined as E:=(—A)"" with zero
boundary conditions, one can easily put (3.8) in the form of Brezis [1, p. 31], namely

T

(3.9) —I

T T

0 (. (%E“’) dt+jo (Aw), ¢) dt = L (EF, ¢) dt +(Ewo, E"?¢(0)),

for all ¢ € W"'(Q). The hypotheses of Theorem 2[1, p. 31] are satisfied with the choices
V=H=L*0, T; L*(G)) because our operator A:V -V is monotone, hemicon-
tinuous (in fact Lipschitz continuous), bounded and coercive as one easily checks using
the lemma at the end of § 2. Therefore there exists w € V = L*(Q) solution of (3.9). This
is a very weak solution, but it can be shown by the method of [1, p. 35] that
A(w)e L*0, T; Hy(G)), so that we L*(0, T; Hy(G)) is a solution of (3.8), and
vi=w+z,eL*0, T; H'(G)) is a solution of (3.6). If v, and v, are two solutions then
(3.6) immediately implies A(v;)=A(v,) and, since k is strictly increasing, also
a '(v1)=a '(vy). Then u=a *(v)e L*0, T; H'(G)) is the unique weak solution of
Problem I as defined in § 2.

The weak solution u possesses additional smoothness. Indeed, by an energy
estimate one can show that w € L*(0, T'; L*(G)) (in fact t—>|lw (¢)||.2cc) is continuous),
which means that w is an element of the space V,(Q) of [8, p. 6]. Then the method of [8,
p. 156-9] can be employed to show that the function t— w( - , ¢) is continuous in L*(G),
so that w(x, ), hence also v(x, 1) and u(x, t), belong to C(0, T'; L*(G)) (to the space
V3 (Q) in the terminology of [8]).

We summarize the above results in the following:

THEOREM 3. (Existence and uniqueness for Problem I). Under the assumptions
(1.7), (1.8) and (3.1), (3.2), Problem I has unique weak solution uc
L0, T; H'(G))N C(0, T; L*(G)).

Now we appeal to the regularity results of [8] to prove

THEOREM 4 (Regularity for Problem I). Under the assumptions (1.7), (1.8) and

(3.10) heL®(G), h#6, a.e.,
(3.11) ge H*(S)NL™(S), g#6, ae.,

the weak solution u of Problem I is bounded and Hélder continuous on every compact
subdomain Q' of Q in which u <80 oru>6;a.e., ie,uecL(Q)N H*+/% (V) for some
0<u <1. Here, as before, H Y2 denotes the fractional order Sobolev space W% of [8, p.
70), while 3**/* stands for the space H**'* of [8, p. 8].

Proof. We have already seen that any solution u(x, ¢) of (3.6) belongs to the space
V3°(Q) of [8, p. 6]. With the help of the lemma of § 2, one easily checks that the
hypotheses of Theorems 2.1 and 1.1 [8, pp. 425 and 419] are satisfied for any domain
Q' = Q not intersecting the interface I';. Hence v € g2 () for some w'>0. Then
u=a'(v)e ¥*“**( Q) with w =min {u', 1}. Q.E.D.
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4. Existence, uniqueness and regularity for Problem II. We begin by establishing
uniqueness with the method of [7] which has also been used in [8], [6], [2], [3]. We
outline the method here referring for more details to [2].

THEOREM 5 (Uniqueness for Problem II). Under the assumptions (1.7), (1.8),
Problem 11 has at most one weak solution.

Proof. Let u,, u, be two weak solutions. By definition, they are bounded measur-
able functions such that v; = k(;), i =1, 2, which satisfy (2.14) for some functions
Bi(vy) and Bj(v,) respectively. Since h# 6, a.e. in G, a(h) is single-valued and
therefore B;(k(h)) = B,(k(h))=a(h). Subtracting (2.14) for v, from (2.14) for v, we
find

4.1) ”ﬂ {{B1(v1) = B2(v2)]e: +[v1—v2] Ap} dx dt = 0.

The aim is to prove
.2) HQ [Bs(v1) ~Ba(v) W dx dt=0 Ve C3 (),

which implies Bi(v,) = B,(v,), hence v; =0, a.e. in (), and therefore also u;=u,
a.e. in Q.

To prove (4.2), consider the bounded nonnegative measurable function (see the
lemma, § 2)

v1(x, 1) —va(x, 1)
(4-3) e(x’ t) = Bl(vl(x’ t))—BZ(UZ(x’ t)),
O’ Ul(x, t) = UZ(xa t)’

and set B(x, t) = B;(v(x, t)) — B2(v2(x, t)), noting that |B8(x, t)| = Co = const. by (2.15)
and the boundedness of v;, i =1, 2. Now (4.1) can be written in the form

vi(x, 1) # va(x, 1),

(4.4) JL B(x, ). +e(x, t) Ap} dx dt=0.

By appropriate mollifications one can construct a sequence é,, € C*(Q)) such that
0=é,(x,t)Ssupge=7y3/yo=C1in Q, and|e,. —e|r2y=1/m,m=1,2,- - - . Nowset
em =6n+1/m and for any ¢ e Cq (Q) fixed, let ¢, (x, ) be the solution of the
(well-posed) problem

)
—@mtem(x, )Ae,=¢ inQ,

at
4.5) Om(x, T)=0 in G(T),
aixgom =0 onS.

The functions ¢,, are acceptable test functions in (4.4) which for ¢ = ¢,,, implies
(4.6) “. Bx, ) dx dt=J’j Bx, t)en —e] Ao, dx dt, m=1,2,--
) )

One can show (see [2]) that there exist constants C,=C,(T;maxs|¢|), Cs, Cs
independent of m such that maxg |@m| = C, llen” A@mllr2a) = Cs and |le/ e/ 2@ = Ca.
These, together with the boundedness of B(x, ), allow one to prove that the right hand
side of (4.6) tends to zero as m - 00, which establishes (4.2). Q.E.D.
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Existence of the solution will be proved first for the case where the data satisfy

4.7) he H(G)NLX(G), h#6, ae.,
4.8) geL®(S) and %feL‘(S), g#0, ae.

After a stability (with respect to data) result has been obtained (Theorem 7), these
assumptions will be weakened (see Theorem 8).

THEOREM 6. Under the assumptions (1.7), (1.8) and (4.7), (4.8), Problem II admits
a weak solution in H' ().

Proof. We approximate b(p) of (2.12) uniformly on compact subsets of R not
containing « = k(6;), by smooth functions b,,(p) which can be chosen to satisfy
a(6;,—0)=b,.(k)=a(6;+0) and

4.9 0<vys=bm(p)=vys(m)<oo,

for some constants y, (independent of m) and ys = ys(m)-> o with m. Set v°:=k(h) e
H'(G)NL®(G), and approximate it by v% e C¥(G) such that maxg|vp|=
ess supg|v’| = ys - esssupg|h|=: Cs and v0, > v° in H'(G). Finally we introduce a
sequence {g.(x,t)} of smooth functions defined on S and satisfying sups|g.|=
ess sups [¢|= Co, gm(x, 0) = (8/n)0m(x)sc; gm—g in L'(S), (8/3t)gm~>(3/31)g in
L(S).

Consider the approximating problems

d
E;b’"(v"‘) =Av,, in{,

(4.10) Om(x,0)=0%(x) in G(0),
0
o, Um = &m onS.

Existence and uniqueness of v,, is established by writing the equation in the form
(3/8) Uy —[b 1 (Vm)] " Avm = 0, reducing (4.10) to a problem with homogeneous initial
condition using the transformation w,,, = v,,, — v%, and then applying Theorem 7.4 [8, p.
491]foreachm=1,2,---.

Now, one easily checks that the hypotheses of Theorem 2.3 [8, p. 16] are satisfied
by choosing 1 =1/v4, ao=0, 8§ =1 and by = 1. Thus the maximum principle [8, p. 17]
yields

4.11) max |[v.|=C;, m=1,2,---,
Q

where the constant C; depends on Cs, Cg but not on m.
Next, the fundamental m-independent bound

(412) ”Um"Hl(Q)é Cs, m= 1, 2, ey,

can be established as follows: Multiply the equation in (4.10) by (8/3¢)v,, and integrate
over G(t) to get IG(r) b:n(vm)lal’m/atl2 dx +%jG(t) (a/at‘)lvxvml2 dx = IaG(r) 8m (avm/at) do.
Integrating this over [0, r] and using (4.9) and (4.11) yields 4 [ fgr) [00m/3¢* dx d7 +
3 [0 IVavml? dx =3 [0 V0% ]? dx + CsC; meas (0G) + Co[|(8/0t)gmllLxs). Since  v5
and (3/81)g,, converge in H'(G) and L'(S) respectively, the sequences ||V,v || 2, and
“(a/at)gm"[_l(s) are bounded. It follows that Ya T“al)m/at"il’(n) +%“vam”%.2(0) =TC,
which, together with (4.11), proves (4.12).
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The boundedness of {v,.,} in H'(Q) allows us to extract a subsequence (in what
follows no distinction will be made in the notation between sequences and
subsequences) which converges weakly in H'(Q) and strongly in L*(Q) (Rellich’s
lemma) to some v € H'(Q). In particular, v,, - v in measure, so a subsequence can be
chosen to converge to v a.e. in (. By (4.11), v can be taken to be bounded by C; in ().
The functions v,, being classical solutions of (4.10) are also weak solutions, that is

(4.13) JI {Bp (V) @: + U A} dx dt+j b (0% (x, 0) dx +I gme dS =0.
(9] G(0) S

Since the sequence {b,, (v, (x, ))}is a bounded sequence of measurable functiops ithasa
subsequence which converges weakly in L*(Q) tosome B(x, t). We claim that B (x, ¢) isa
function of the type B(v(x, t)), i.e., B(x, t)€ b(v(x, t)) a.e. in Q (see § 2), so that by
taking m - 00, (4.13) yields (2.14) which proves that u:=k '(v)e H'(Q) is a weak
solution. Indeed, v,, > v a.e. in ) implies that for almost all points (x, ¢) for which
v(x, 1) # Kk =k(05), bm(vm(x, 1))>b(v(x, 1) =a(k (v(x, ) because of the uniform
convergence of b,, to b, hence B(x, t)=b(v(x, 1)) at such points. On the other hand, for
a.a. points where v(~x, t) =k, we have a (6, —0)=1lim b, (v,.(x, £)) =lim b,, (v, (x, 1)) =
a(6;,+0), hence B(x,t)e[a(6;,—0), a(6;+0)]=b(x), and this completes the
proof. Q.E.D.

THEOREM 7. If u; and u, are weak solutions of Problem 11 corresponding to data
hi1, g1 and h,, g> which satisfy (4.7), (4.8), then

lur = w2l L2 = Ciofllhs = holl 26+ g1 — g2llLrs)}-

Proof. Let v;i=k(w;), i=1, 2, let B;(v;), i=1, 2 be the functions used in the
definition of weak solution (2.14), and set B(x, t) == B1(v1(x, t)) — B2(v2(x, t)). Next let
Y e Cy (Q) and let ¢,, be the solution of (4.5) which is an acceptable test function. Using
(4.5), (4.3) and (2.14) we have [[, B(x, t)¢ dx dt = [[o B(x, ){(3/08)@m + e Ay} dx dt
+ 1 = =[5 [Bi(k(h1)) = Ba(k (h2)l@m dx — [s[g1— 82)¢m dS + I, where
L, ={[q B(x, t)[em — €] A@,, dx dt. It can be shown [2, p. 490-1] that I, >0 as m >0
and that maxg |@,.| = C»(T'; max |¢|). Hence

(4.14) HI B(x, N dx dt| = Cz - {ysllh1— hallz o)+ g1 — gallLrs)}
a

because h; # 0, a.e. = |B;(k(h1))—Ba(k(hy))|=|a(hy)—a(hy)|=ys|h1—h,|. Now the
bounded measurable function B(x, t) can be approximated in L*(Q) by a sequence
¥; € Cy (Q) such that all the ¢; are bounded in ) by the bound on B(x, ¢). This bound is
estimated by (2.15) and (4.11) in terms of only vy, v3, T, ess supg |h;|, ess sups |gi], i =1,
2. Thus (4.14) holds for each ¢; (C, will depend on the quantities just mentioned).
Letting j - o0 we obtain [fg, |8(x, £)* dx dt = Cy1{|h1 — ol 26) + g1 — g2ll1es)} Whence
the result follows because of |8 (x, #)| = yo/ v3|v1 — N 'y(z)/'yglul —u. Q.E.D.

This result enables us to obtain the existence of a weak solution when 4 € L*(G),
g € L™(S). Indeed, given such data let h;, g; be approximations satisfying (4.7), (4.8). For
each j=1, 2,---, Theorem 6 yields the existence of a weak solution u; such that
v; = k(u;) satisfies (2.14) with data h;, g;. The sequences {A;}, {g;} are Cauchy, so by
Theorem 7, {u;} (and {v;}) is Cauchy in L*(Q) and therefore it has a bounded limit
u € L*(Q) such that v = k (u) satisfies (2.14) because vj, Bj(k(h;)) = a(h;) and g; converge
tov,a(h)and gin L*(Q), L*(G)and L'(S) respectively, and (as in the proof of Theorem
6) B;(v;) converges weakly in L*(Q) to a function of type B(v). Thus we have the more
general
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THEOREM 8 (Existence and uniqueness for Problem II). If (1.7), (1.8) hold and if
h(x) and g(x, t) are bounded measurable functions in G and on S respectively, then
Problem 11 has unique weak solution u € L*(Q).

Remark. Similarly one can show that the stability result of Theorem 7 still holds
under the weaker hypotheses of Theorem 8.

We mention that the following monotone dependence result can be shown by the
method of [6, p. 64], [2, p. 448]:

THEOREM 9. Under the assumptions of Theorem 8, ifh = ha.e.in G,g=ga.e. on S,
then the solutions u and ii corresponding to data h, g and h, g respectively satisfy u = ii a.e.
in Q.

Finally, the Holder estimates of [8] can be employed as in [8, p. 501-2] to show:

THEOREM 10 (Regularity for Problem II). Under the assumptions of Theorem 8, the
weak solution u of Problem II is Hélder continuous in every compact subdomain () of Q)
where u < 6 or u> 6,

Remark. The methods of § 4 can also be applied to Problem I and then a stability
result like Theorem 7 as well as a monotone dependence result like Theorem 9 can also
be obtained for that problem.
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BOUNDS FOR SOLUTIONS TO A CLASS OF INTEGRODIFFERENTIAL
EQUATIONS ASSOCIATED WITH A THEORY OF RIGID
NONCONDUCTING MATERIAL DIELECTRICS*

FREDERICK BLOOMf*

Abstract. Let H, H, be real Hilbert spaces with H, < H algebraically and topologically and H, dense in
H. Let H_ be the dual of H, via the inner product of H and denote by £s(H.., H_) the space of symmetric
bounded linear operators from H. into H_. We prove that the evolution of the electric displacement field in a
simple class of holohedral isotropic dielectrics can be modeled by an abstract initial-value problem of the form

t

n,,—au,~Lu+I M(t — 7)u(r) dr = B(t)uy, 0=t=T,
0

u0)=u, w(0)=wu (o, w; € H,),

where Le $s(H,, H_), M(t) e L2([0, T); %s(H,, H.)), B(t)e c!([0, T)), and « isan arbitrary (nonzero) real
number. By employing a logarithmic convexity argument we derive growth estimates for solutions of the
above system which lie in uniformly bounded classes of the form

N ={ue C*(0, T); H.)| sup |l =N}
[o, T)

for some N > 0; our results are derived under a variety of assumptions concerning «, 3(t), and the initial data
(without making any definiteness assumptions on the operators L or M(¢), 0=t < T') and are used to obtain
growth estimates for the electric displacement field D(x, ¢) in rigid dielectrics which satisfy constitutive
relations of the form

D(x, t) = aoE(x, 1)+ J ¢(t—7)E(x, 7) dT,
0

t

H(x, t) = boB(x, ) +J Y(t—71)B(x, 7) dr,

0

where E, H, B are the usual electromagnetic field variables, (x, t) € A x[0, T), Q < R* is bounded region with
smooth boundary 4}, ao and b, are positive constants, and ¢, ¢ are nonnegative monotonically decreasing
functions of ¢

1. Introduction. In recent work [1]-[4] this author has derived stability and
growth estimates for specific classes of solutions to initial-value problems associated
with abstract integrodifferential equations of the form

(1.1) u,,—Nu+I K(—7u(r)dr=0, 0=r<T.

In this equation ue C*([0, T); H.) with u,e C'([0, T); H.), and u, € C([0, T); H_),
where H.,, H_ are Hilbert spaces which are defined as follows: Let H be any real Hilbert
space with inner-product (-, - ) and let H. c H (algebraically and topologically) with H.,
dense in H; denote the inner-product on H, by (-, - ),. Then H_ is the completion of H
under the norm

(1.2) Wil = sup L

veH, ”V”+ '

If we let £(H.., H_) denote the space of bounded linear operators from H. into H_ then

* Received by the editors December 1, 1978 and in revised form May 9, 1979.
+ Department of Mathematics and Computer Science, University of South Carolina, Columbia, South

Carolina 29208. This research was supported in part by the Air Force Office of Scientific Research under
AFOSR Grant 77-3396.
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in (1.1) we only require that
(i) Ne £(H., H_) be symmetric; and
(i) K(1), K.(t) € L*((—00, ©0); L(H., H.));
where K, denotes the strong operator derivative of K; no definiteness assumptions are

placed on N and thus the initial-value problem obtained by appending to (1.1) the initial
data

(1.3a) u(0)=f, w(0)=g,  fgeH.
and the prescription of the past history which is given by
(1.3b) u(7)=U(7), —0< <0,

is, in general, not well posed. If we restrict our attention to classes of bounded solutions
to (1.1)-(1.3) of the form N = {v e C*([0, T); H.)|supo.»|Iv(?)||l+ = N} then it is possible
to derive both stability and growth estimates for solutions u € /" under the assumption
that K(0) satisfies

(1.4a) —(v, KOW)=«|vl|?>, VYveH,,

where

(1.4b) k ZwT sup K (1)l e, m)
[0.7)

with w the embedding constant for the injection i: H - H..

The technique used in [1]-[3] is based on a logarithmic convexity argument first
employed by Knops and Payne [5] for the abstract wave equation obtained from (1.1)
by setting K(r)=0; a different logarithmic convexity argument was employed by this
author in [4] to derive continuous data dependence theorems for the system (1.1),
(1.3a), (1.3b). The results obtained in [2]-[4] are applied in those papers to obtain
growth, stability, and continuous data dependence theorems for solutions to initial-
value problems associated with the equations of motion for linear isothermal visco-
elastic materials; the spaces H, H,, and H_, as well as the operators N and K(z), are
constructed and no definiteness assumptions are made on the initial value of the
relaxation tensor. In the case of a one-dimensional homogeneous (isothermal) linear
viscoelastic body, it is shown in [3] that the conditions (1.4a), (1.4b) are equivalent to
the requirements that

(1.5) yO=-x with x>oT( sup |§(t)|),
[0, 1)

where ¢(¢) is the relaxation function of the material.

More recently we have turned our attention to the way in which integrodifferential
equations arise in the theory of polarized nonconducting material dielectrics, i.e., in [6]
we have considered the following problem: Let E, B, P, and D denote, respectively, the
electric field vector, the magnetic flux density, the polarization vector, and the electric

.displacement in a nonconducting medium; the polarization and electric displacement
vectors are related via

(1.6) D=¢,E+P, £o=const.

If (x',¢),i=1,2,3, denotes a Lorentz reference frame, with the (x') rectangular
Cartesian coordinates and ¢ the time parameter, then Maxwell’s equations have the
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local form
B
(1.7) a—t+curlE=O, divB=0,
oD
(1.8) curlH—-;t—=0, divD=0

whenever the density of free current Jz = 0, the magnetization M = 0, and the density of
free charge Qf = 0; in (1.7b), H represents the magnetic intensity and is related to the
magnetic flux density via H= ugo' B where oo =c >, ¢ being the speed of light in a
vacuum. A determinate system of equations for the fields appearing in Maxwell’s
equations is obtained by specifying a set of constitutive relations. For example, in a
vacuum P =0 so

(1.9) D=cE, H=u;,'B,
while in a rigid, linear, stationary nonconducting dielectric
(1.10) D=¢"E, B=p-H,

where € and p are constant second order tensors; the constitutive equations (1.10) were
given by Maxwell in 1873 [7]. In [6] we considered the set of equations which define the
dielectric as being a Maxwell-Hopkinson material, i.e., (1.10,) and

(1.11) D(t)=eE(t)+J“ ¢(t—7)E(7) dr,

where £ >0 and ¢(¢) is a continuous monotonically decreasing function for ¢ =0;
following a suggestion of Maxwell, Hopkinson [8] employed the constitutive equations
(1.103), (1.11) in connection with his studies on the residual charge of the Leyden jar. It
was demonstrated in [6] that (1.11) in conjunction with the local Maxwell equations
(1.7), (1.8), yield certain integrodifferential equations for the evolution of the electric
field and the electric displacement field, respectively, in a nonconducting material
dielectric of Maxwell-Hopkinson type.

By introducing suitable Hilbert spaces H, H,, H_ and operators N € ¥(H., H)
and K (r) e L*((—00, ©); $L(H., H.)) we were able in [6] to treat the initial-boundary
value problem for D, as a special case of the abstract initial-value problem (1.1), (1.2)
(in [6] we assumed that D(7) =0, —00 < 7 <0). From the stability and growth estimates
derived for the electric displacement field D, corresponding estimates were then
derived from the electric field E' by employing the relation

(1.12) E()=¢ 'D@)+e " j ®O(t—7)D(7) dr
0

which is obtaining by inverting the Maxwell-Hopkinson relation (1.11) via the usual
technique of successive approximation.

The constitutive relations associated with the Maxwell-Hopkinson theory, i.e.,
(1.10,) and (1.11), embody three basic simplifying assumptions: They are linear, they
effect an a priori separation of electric and magnetic effects, and they do not allow for
magnetic memory effects. As early as 1912 Volterra [9] proposed extending the

! For an excellent discussion of the qualitative behavior of electromagnetic fields and dielectric constants
in dielectrics of Maxwell-Hopkinson type (especially in the presence of an applied time periodic electric field)
we refer the reader to the monograph of H. Frohlich, Theory of Dielectrics, Oxford University Press, 1949.
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Maxwell-Hopkinson theory to treat the case where the dielectric is anisotropic,
nonlinear, and magnetized; his constitutive relations were of the form

(1.13a) D(x,t)=¢-E(x, 1)+ D" (E(x, 7)),
(1.13b) B(x,t)=p- H(x, t)+ B_(H(x, 7))

and it can be shown that (1.13a) reduces to (1.11) if the functional @ is linear and
isotropic and the body satisfies various restrictions which follow from considerations of
material symmetry. Of course, (1.13a), (1.13b) still effect an a priori separation of
electric and magnetic effects and, as pointed out by Toupin and Rivlin [10], such a
separation is inadequate with respect to predicting such a phenomena as the Faraday
effect in dielectrics. In [10] Toupin and Rivlin postulated constitutive equations of the
form

(1.14a) D(t) = i a, - E”(0)+ Zn: ¢, - BY()
0 v=0

=
t

+J &i(t, 7) - E(7) dT+J &o(t, 7) - B(7) dT,

(1.14b) H(:) = i d, - E(V)(t)'f‘ i b, - B(V)(t)
v=0 v=0

t

+ j Ui(t, 7) - B(r) dr + j Ua(t, 7) - E(r) dr,

where E”(¢) = d”E(t)/dt” and a,, - - -, d, are constant tensors; the kernels &1, - - -, U
are taken to be continuous tensor functions of ¢ and 7 which satisfy growth conditions of
the form

bt T)<c/t—7)'"" p>0.

Toupin and Rivlin [10] also assumed that the dielectric does not exhibit aging and as a
consequence it follows that D(¢) and H(¢) are periodic functions whenever E(¢) and B(¢)
are; this latter result, when combined with the hypothesized growth estimates on the
kernel functions, and early results of Volterra on the theory of functionals [9], yields the
conclusion that ¢, - - -, s, depend on ¢ and 7 only through the difference ¢ — 7 (the
converse of this result is also true). Toupin and Rivlin [10] then prove that if the
dielectric exhibits holohedral isotropy, i.e., if it admits as its group of material symmetry
transformations the full orthogonal group, then E(¢) may be eliminated from (1.14b)
and B(r) may be eliminated from (1.14a); for a holohedral isotropic dielectric the
constitutive equations (1.14a), (1.14b) reduce to

(1.15a) D(f) = i auE(")(t)+J ¢ (t—7)E(7) dr,
v=0 00

n

(1.15b) H()= Y buB(")(t)+J Y(t—1)B(7) dr,

v= —

where ¢ = ¢1, ¥ = ¢, and where (due to the assumption of holohedral isotropy) a,, b,,
&, and Y5, are all proportional to the identity tensor and thus appear as scalars in
(1.15a), (1.15b).
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In this paper we examine the special case of (1.15a), (1.15b) which corresponds to
the assumptions a, =0, b, =0, v=1 and E(7) =0, B(7) =0, —0<7 <0, i.e.

(1.16a) D(¢) = aoE(t)»"'j'(ﬁ(t“T)E(T) dr,
0

(1.16b) H(?) = boB(t) + J Y(t—7)B(7) dr.
o

This special case of a holohedral isotropic nonconducting material dielectric still
embodies a separation of electric and magnetic effects in the constitutive theory but
generalizes the Maxwell-Hopkinson theory in that magnetic memory effects are taken
into account through the presence of the kernal function ¢(¢). In the next section we will
formulate an initial-boundary value problem for the electric displacement field D(¢) in a
holohedral isotropic dielectric; provided (0)# 0, D(¢) will be shown to satisfy a
(nonhomogeneous) integrodifferential equation. By introducing suitable Hilbert spaces
and operators, the initial-boundary value problem for D(¢) is easily demonstrated to be
equivalent to an initial value problem for an abstract integrodifferential equation and
growth estimates for specific classes of solutions to this abstract problem are then
obtained by employing a suitable logarithmic convexity argument.

2. Initial-boundary value problems for holohedral isotropic dielectrics. Let (x', 1)
be a fixed Lorentz reference frame; the local forms of Maxwell’s equations are then
given by (1.7), (1.8). Let Q = R* be a bounded region with boundary 4Q and assume that
oQ is sufficiently smooth so that the divergence theorem may be applied. Finally,
assume that Q is filled with a holohedral isotropic nonconducting dielectric material
which is nondeformable and which satisfies the hypotheses of § 1 so that, in (Q, the
electromagnetic field satisfies constitutive relations of the form (1.16a), (1.16b) where
we assume that ap>0, bo>0 and ¢(¢), ¥(t) are monotonically decreasing functions
which are (at least) twice continuously differentiable on [0, ) with ¢®(¢) a bounded
integrable function on [0, 00). The basic result of this section is

THEOREM 2.1. The evolution of the electric displacement field D(x, t) in any
holohedral isotropic nonconducting material dielectric (which conforms to the constitutive
hypotheses (1.16a), (1.16b)) is governed by the system of equations

d D d Dk

D w(0) 22 b () oo o -]
- 3" Dy (7)

+ b() J (‘P(f - T)D,’(T) “'(I)()(t - T)aik 8,‘1'_kT> dT = bo‘P(t)D,(O),
0 ax,~ ax;
where co=1/(ao¥(0)), ®o(t) =D(t)/ao and
0= 3 (-17'6"(0),

(2.2) o ()= J- Ye—1)p" (1) dr, n=?2,

¢'()=ao'¢(t)

with an analogous definition for V(t) in terms of ¥(t).
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Proof. By using successive approximations we may invert the constitutive relations
(1.16a) and (1.16Db) to obtain, respectively,

(2.3a) E(?) =*1—D(t)+lj Ot —7)D(7) dr,
ao ao Jo

(2.3b) B(t)= lH(t) +l J"\If(t —7)H(7) dr
' bo bo Jo

with ®(¢) and W(¢)defined in terms of ¢ () and, ¢ (¢) respectively, as indicated in (2.2).
From (2.3a) and the second Maxwell relation in (1.8) div E(¢) =0 so

2.4) AE(¢) = —curl curl E(¢).

From (2.3b), however, and the first Maxwell relation in (1.7)
1 1 !

(2.5) curl E(t)=-B,=——H,——Y(0)H(z) —j W, (t—7)H(7) dr.
bo bo 0

Therefore,

—curl curl E(¢)

(2.6) = Zl(—)(curl H), +Bl-;\lf(0)(curl H(t)) +J , W, (¢t —7) (curl H(7)) dr

0

t
~Ip.+1wop, + j W, (t—71)D,(7) dr,
bo bo 0

where the second relation in (2.6) follows from the first Maxwell equation in (1.7).
Combining (2.6,) with (2.4) and employing (2.3a) we obtain

2.7) Dx+¥Y(0)D,+bo L V. (t—7)D.(7)dr = ? AD(¢) +~z—q I O(t—71) AD(7) dr.
0 0Jo

However,
(2.8) j Y, (t—7)D.(7) dr =¥ (0)D(¢) — ¥ (1)D(0) + J" V.. (t—7)D(7) dr.
0 (4]

Substituting (2.8) into (2.7) we have on Q x[0, 00):

D, +W(0)D, + bW (0)(I - coA)D (1)

(2.9) , .

+bo j (W (£ = 1)L = Dot — 7)A)D(7) dr = boW(1)D(0),
0

where co = 1/(ao¥(0)) and ®o(¢) = (¢)/a,. Q.E.D.
In conjunction with the integrodifferential equation (2.9) we consider initial and
boundary data of the form

(2.10a) D(x, 0) = Dy(x), D.(x, 0) =D;(x), xe (),
(2.10b) D(, t)=0, (x, 1) €002 X [0, 00),

where Do, D; are continuous on (). At this point it is convenient to recast the
initial-boundary value problem (2.9), (2.10a), (2.10b) as an initial-value problem for an
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integrodifferential equation in Hilbert space.” As in [6] we let C (Q) denote the set of
three dimensional vector fields with compact support in ) whose components are in
Co (Q). We take H = L,(Q), i.e., the completion of Cg (2) under the norm induced by
the inner product

(2.11) (v, w)[,zEJ‘ viw; dx
Q

while the Hilbert space H. is taken to be H 0 (Q) the completion of Cy () under the
norm induced by the inner product

(2.12) v, w)H(gEJ 900 90 4y
o 0X; dx;
Finally, H_ = H '(Q), the Hilbert space obtained by completing C§ (Q) under the
norm
ow; ow; 12
2 = sup [|] oonax| /([ S 50ax) ]
(2.13) IVller- sup, ow; dx evalres

It is known that H§(Q) < L,(Q) (both topologically and algebraically) and that H} is
dense in L,. We denote by w the embedding constant for the inclusion map i: Hg () >
L,(Q).

Operators Le £(Hg, H™ ") and M (t) € L*((~00, ); L(H, H™")) are now defined
as follows:

2
(2.142)  (Lv)= bo\P(O)[co PR AL

k 1
8 ] H(Q),
ax ax, Y veH ()

(2.14b) (M(t)v)ii'-bo[{if(t) 8:jv; — Do(t) S 3,,68 ‘;" ] veHo(Q), te(—c0, ),

where the derivatives are taken in the distribution sense. It follows directly from these
definitions and the smoothness assumptions on ¢ (¢) and ¢(¢) that

(i) Le%s(Ho, H "), M(t)e Ls(Ho, H™"), t & (=00, 00);

(i) ML(+)eL>((—o0, 00); L(Ho, H™Y));
where Zs<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>